Transforming Cyber Defense: Harnessing Agentic and Frontier AI for Proactive, Ethical Threat Intelligence
- URL: http://arxiv.org/abs/2503.00164v1
- Date: Fri, 28 Feb 2025 20:23:35 GMT
- Title: Transforming Cyber Defense: Harnessing Agentic and Frontier AI for Proactive, Ethical Threat Intelligence
- Authors: Krti Tallam,
- Abstract summary: This manuscript explores how the convergence of agentic AI and Frontier AI is transforming cybersecurity.<n>We examine the roles of real time monitoring, automated incident response, and perpetual learning in forging a resilient, dynamic defense ecosystem.<n>Our vision is to harmonize technological innovation with unwavering ethical oversight, ensuring that future AI driven security solutions uphold core human values of fairness, transparency, and accountability while effectively countering emerging cyber threats.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In an era marked by unprecedented digital complexity, the cybersecurity landscape is evolving at a breakneck pace, challenging traditional defense paradigms. Advanced Persistent Threats (APTs) reveal inherent vulnerabilities in conventional security measures and underscore the urgent need for continuous, adaptive, and proactive strategies that seamlessly integrate human insight with cutting edge AI technologies. This manuscript explores how the convergence of agentic AI and Frontier AI is transforming cybersecurity by reimagining frameworks such as the cyber kill chain, enhancing threat intelligence processes, and embedding robust ethical governance within automated response systems. Drawing on real-world data and forward looking perspectives, we examine the roles of real time monitoring, automated incident response, and perpetual learning in forging a resilient, dynamic defense ecosystem. Our vision is to harmonize technological innovation with unwavering ethical oversight, ensuring that future AI driven security solutions uphold core human values of fairness, transparency, and accountability while effectively countering emerging cyber threats.
Related papers
- AI threats to national security can be countered through an incident regime [55.2480439325792]
We propose a legally mandated post-deployment AI incident regime that aims to counter potential national security threats from AI systems.
Our proposed AI incident regime is split into three phases. The first phase revolves around a novel operationalization of what counts as an 'AI incident'
The second and third phases spell out that AI providers should notify a government agency about incidents, and that the government agency should be involved in amending AI providers' security and safety procedures.
arXiv Detail & Related papers (2025-03-25T17:51:50Z) - Cyber Shadows: Neutralizing Security Threats with AI and Targeted Policy Measures [0.0]
Cyber threats pose risks at individual, organizational, and societal levels.<n>This paper proposes a comprehensive cybersecurity strategy that integrates AI-driven solutions with targeted policy interventions.
arXiv Detail & Related papers (2025-01-03T09:26:50Z) - The MESA Security Model 2.0: A Dynamic Framework for Mitigating Stealth Data Exfiltration [0.0]
Stealth Data Exfiltration is a significant cyber threat characterized by covert infiltration, extended undetectability, and unauthorized dissemination of confidential data.
Our findings reveal that conventional defense-in-depth strategies often fall short in combating these sophisticated threats.
As we navigate this complex landscape, it is crucial to anticipate potential threats and continually update our defenses.
arXiv Detail & Related papers (2024-05-17T16:14:45Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
This paper explores the integration of Artificial Intelligence (AI) into offensive cybersecurity.
It develops an autonomous AI agent, ReaperAI, designed to simulate and execute cyberattacks.
ReaperAI demonstrates the potential to identify, exploit, and analyze security vulnerabilities autonomously.
arXiv Detail & Related papers (2024-05-09T18:15:12Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Autonomous Threat Hunting: A Future Paradigm for AI-Driven Threat Intelligence [0.0]
Review explores the amalgamation of artificial intelligence (AI) and traditional threat intelligence methodologies.
Examines the transformative influence of AI and machine learning on conventional threat intelligence practices.
Case studies and evaluations highlight success stories and lessons learned by organizations adopting AI-driven threat intelligence.
arXiv Detail & Related papers (2023-12-30T17:36:08Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Decoding the Threat Landscape : ChatGPT, FraudGPT, and WormGPT in Social Engineering Attacks [0.0]
Generative AI models have revolutionized the field of cyberattacks, empowering malicious actors to craft convincing and personalized phishing lures.
These models, ChatGPT, FraudGPT, and WormGPT, have augmented existing threats and ushered in new dimensions of risk.
To counter these threats, we outline a range of strategies, including traditional security measures, AI-powered security solutions, and collaborative approaches in cybersecurity.
arXiv Detail & Related papers (2023-10-09T10:31:04Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.