論文の概要: ProDapt: Proprioceptive Adaptation using Long-term Memory Diffusion
- arxiv url: http://arxiv.org/abs/2503.00193v1
- Date: Fri, 28 Feb 2025 21:27:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:13:23.738567
- Title: ProDapt: Proprioceptive Adaptation using Long-term Memory Diffusion
- Title(参考訳): ProDapt: 長期記憶拡散を用いた固有受容適応
- Authors: Federico Pizarro Bejarano, Bryson Jones, Daniel Pastor Moreno, Joseph Bowkett, Paul G. Backes, Angela P. Schoellig,
- Abstract要約: 宇宙、軍事、水中の用途では、ロボットは外部受容センサーの故障に対して非常に堅牢でなければならない。
本稿では,ロボットと環境との接触の長期記憶を組み込んだProDaptを提案する。
- 参考スコア(独自算出の注目度): 5.420695947366242
- License:
- Abstract: Diffusion models have revolutionized imitation learning, allowing robots to replicate complex behaviours. However, diffusion often relies on cameras and other exteroceptive sensors to observe the environment and lacks long-term memory. In space, military, and underwater applications, robots must be highly robust to failures in exteroceptive sensors, operating using only proprioceptive information. In this paper, we propose ProDapt, a method of incorporating long-term memory of previous contacts between the robot and the environment in the diffusion process, allowing it to complete tasks using only proprioceptive data. This is achieved by identifying "keypoints", essential past observations maintained as inputs to the policy. We test our approach using a UR10e robotic arm in both simulation and real experiments and demonstrate the necessity of this long-term memory for task completion.
- Abstract(参考訳): 拡散モデルは模倣学習に革命をもたらし、ロボットは複雑な振る舞いを再現できる。
しかし、拡散はしばしば環境を観察するためにカメラやその他の外部受容センサーに依存し、長期記憶に欠ける。
宇宙、軍事、水中の用途では、ロボットは外部受容センサーの故障に対して非常に堅牢でなければならない。
本稿では,ロボットと環境との因果関係の長期記憶を拡散過程に組み込んだProDaptを提案する。
これは、政策への入力として維持された、重要な過去の観察である「キーポイント」を特定することで達成される。
シミュレーションと実実験の両方においてUR10eロボットアームを用いて本手法を検証し,タスク完了のためのこの長期記憶の必要性を実証する。
関連論文リスト
- Multimodal Anomaly Detection based on Deep Auto-Encoder for Object Slip
Perception of Mobile Manipulation Robots [22.63980025871784]
提案フレームワークは,RGBや深度カメラ,マイク,力トルクセンサなど,さまざまなロボットセンサから収集した異種データストリームを統合する。
統合されたデータは、ディープオートエンコーダを訓練して、通常の状態を示す多感覚データの潜在表現を構築するために使用される。
次に、トレーニングされたエンコーダの潜伏値と再構成された入力データの潜伏値との差によって測定された誤差スコアによって異常を識別することができる。
論文 参考訳(メタデータ) (2024-03-06T09:15:53Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
人間は触覚と触覚に頼っている。
視覚ベースの触覚センサーは、様々なロボット認識や制御タスクに広く利用されている。
本稿では,視覚に基づく触覚センサを用いた対話的知覚手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T16:27:37Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Memory-based gaze prediction in deep imitation learning for robot
manipulation [2.857551605623957]
提案アルゴリズムは、逐次データに基づく視線推定にTransformerベースの自己アテンションアーキテクチャを用いてメモリを実装している。
提案手法は,従来の状態の記憶を必要とする実ロボット多目的操作タスクを用いて評価した。
論文 参考訳(メタデータ) (2022-02-10T07:30:08Z) - Self-Supervised Motion Retargeting with Safety Guarantee [12.325683599398564]
本研究では、人型ロボットのモーションキャプチャーデータやRGBビデオから自然な動きを生成できるデータ駆動モーション法を提案する。
本手法は、CMUモーションキャプチャデータベースとYouTubeビデオの両方から表現型ロボットモーションを生成することができる。
論文 参考訳(メタデータ) (2021-03-11T04:17:26Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
本稿では、画像からロボットの手を切り離すための畳み込みニューラルネットワーク(CNN)を提案する。
ヒューマノイドロボットVizzyの手のセグメンテーションのために,Mask-RCNNネットワークを微調整した。
論文 参考訳(メタデータ) (2021-02-09T10:34:32Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z) - Low Dimensional State Representation Learning with Reward-shaped Priors [7.211095654886105]
本研究では,観測結果から低次元状態空間への写像の学習を目的とした手法を提案する。
このマッピングは、環境とタスクの事前知識を組み込むために形作られた損失関数を用いて教師なしの学習で学習される。
本手法は,シミュレーション環境における移動ロボットナビゲーションタスクおよび実ロボット上でのテストを行う。
論文 参考訳(メタデータ) (2020-07-29T13:00:39Z) - Deep Reinforcement learning for real autonomous mobile robot navigation
in indoor environments [0.0]
本研究では,地図やプランナーを使わずに,未知の環境下での自律型自律学習ロボットナビゲーションの概念を実証する。
ロボットの入力は、2DレーザースキャナーとRGB-Dカメラからの融合データと目標への向きのみである。
Asynchronous Advantage Actor-Critic Network(GA3C)の出力動作は、ロボットの線形および角速度である。
論文 参考訳(メタデータ) (2020-05-28T09:15:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。