Transformers with Joint Tokens and Local-Global Attention for Efficient Human Pose Estimation
- URL: http://arxiv.org/abs/2503.00232v1
- Date: Fri, 28 Feb 2025 22:34:22 GMT
- Title: Transformers with Joint Tokens and Local-Global Attention for Efficient Human Pose Estimation
- Authors: Kaleab A. Kinfu, René Vidal,
- Abstract summary: This paper proposes two ViT-based models for accurate, efficient, and robust 2D pose estimation.<n> Experiments on six benchmarks demonstrate that the proposed methods significantly outperform state-of-the-art methods.
- Score: 34.99437411281915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) have led to significant progress in 2D body pose estimation. However, achieving a good balance between accuracy, efficiency, and robustness remains a challenge. For instance, CNNs are computationally efficient but struggle with long-range dependencies, while ViTs excel in capturing such dependencies but suffer from quadratic computational complexity. This paper proposes two ViT-based models for accurate, efficient, and robust 2D pose estimation. The first one, EViTPose, operates in a computationally efficient manner without sacrificing accuracy by utilizing learnable joint tokens to select and process a subset of the most important body patches, enabling us to control the trade-off between accuracy and efficiency by changing the number of patches to be processed. The second one, UniTransPose, while not allowing for the same level of direct control over the trade-off, efficiently handles multiple scales by combining (1) an efficient multi-scale transformer encoder that uses both local and global attention with (2) an efficient sub-pixel CNN decoder for better speed and accuracy. Moreover, by incorporating all joints from different benchmarks into a unified skeletal representation, we train robust methods that learn from multiple datasets simultaneously and perform well across a range of scenarios -- including pose variations, lighting conditions, and occlusions. Experiments on six benchmarks demonstrate that the proposed methods significantly outperform state-of-the-art methods while improving computational efficiency. EViTPose exhibits a significant decrease in computational complexity (30% to 44% less in GFLOPs) with a minimal drop of accuracy (0% to 3.5% less), and UniTransPose achieves accuracy improvements ranging from 0.9% to 43.8% across these benchmarks.
Related papers
- Efficient Federated Learning Using Dynamic Update and Adaptive Pruning with Momentum on Shared Server Data [59.6985168241067]
Federated Learning (FL) encounters two important problems, i.e., low training efficiency and limited computational resources.
We propose a new FL framework, FedDUMAP, to leverage the shared insensitive data on the server and the distributed data in edge devices.
Our proposed FL model, FedDUMAP, combines the three original techniques and has a significantly better performance compared with baseline approaches.
arXiv Detail & Related papers (2024-08-11T02:59:11Z) - Efficient Vision Transformer for Human Pose Estimation via Patch
Selection [1.450405446885067]
Vision Transformers (ViTs) have emerged as a promising alternative to CNNs, boosting state-of-the-art performance.
We propose three methods for reducing ViT's computational complexity, which are based on selecting and processing a small number of most informative patches.
Our proposed methods achieve a significant reduction in computational complexity, ranging from 30% to 44%, with only a minimal drop in accuracy between 0% and 3.5%.
arXiv Detail & Related papers (2023-06-07T08:02:17Z) - Efficient and Effective Methods for Mixed Precision Neural Network
Quantization for Faster, Energy-efficient Inference [3.3213055774512648]
Quantizing networks to lower precision is a powerful technique for simplifying networks.
Mixed precision quantization methods selectively tune the precision of individual layers to achieve a minimum drop in task performance.
To estimate the impact of layer precision choice on task performance, two methods are introduced.
Using EAGL and ALPS for layer precision selection, full-precision accuracy is recovered with a mix of 4-bit and 2-bit layers.
arXiv Detail & Related papers (2023-01-30T23:26:33Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - ERNIE-SPARSE: Learning Hierarchical Efficient Transformer Through
Regularized Self-Attention [48.697458429460184]
Two factors, information bottleneck sensitivity and inconsistency between different attention topologies, could affect the performance of the Sparse Transformer.
This paper proposes a well-designed model named ERNIE-Sparse.
It consists of two distinctive parts: (i) Hierarchical Sparse Transformer (HST) to sequentially unify local and global information, and (ii) Self-Attention Regularization (SAR) to minimize the distance for transformers with different attention topologies.
arXiv Detail & Related papers (2022-03-23T08:47:01Z) - DoT: An efficient Double Transformer for NLP tasks with tables [3.0079490585515343]
DoT is a double transformer model that decomposes the problem into two sub-tasks.
We show that for a small drop of accuracy, DoT improves training and inference time by at least 50%.
arXiv Detail & Related papers (2021-06-01T13:33:53Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
Dilation convolution is a critical mutant of standard convolution neural network to control effective receptive fields and handle large scale variance of objects.
We propose a new mutant of dilated convolution, namely inception (dilated) convolution where the convolutions have independent dilation among different axes, channels and layers.
We explore a practical method for fitting the complex inception convolution to the data, a simple while effective dilation search algorithm(EDO) based on statistical optimization is developed.
arXiv Detail & Related papers (2020-12-25T14:58:35Z) - Training Binary Neural Networks with Real-to-Binary Convolutions [52.91164959767517]
We show how to train binary networks to within a few percent points of the full precision counterpart.
We show how to build a strong baseline, which already achieves state-of-the-art accuracy.
We show that, when putting all of our improvements together, the proposed model beats the current state of the art by more than 5% top-1 accuracy on ImageNet.
arXiv Detail & Related papers (2020-03-25T17:54:38Z) - Efficient Bitwidth Search for Practical Mixed Precision Neural Network [33.80117489791902]
Network quantization has rapidly become one of the most widely used methods to compress and accelerate deep neural networks.
Recent efforts propose to quantize weights and activations from different layers with different precision to improve the overall performance.
It is challenging to find the optimal bitwidth (i.e., precision) for weights and activations of each layer efficiently.
It is yet unclear how to perform convolution for weights and activations of different precision efficiently on generic hardware platforms.
arXiv Detail & Related papers (2020-03-17T08:27:48Z) - Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by
Enabling Input-Adaptive Inference [119.19779637025444]
Deep networks were recently suggested to face the odds between accuracy (on clean natural images) and robustness (on adversarially perturbed images)
This paper studies multi-exit networks associated with input-adaptive inference, showing their strong promise in achieving a "sweet point" in cooptimizing model accuracy, robustness and efficiency.
arXiv Detail & Related papers (2020-02-24T00:40:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.