POLARON: Precision-aware On-device Learning and Adaptive Runtime-cONfigurable AI acceleration
- URL: http://arxiv.org/abs/2506.08785v1
- Date: Tue, 10 Jun 2025 13:33:02 GMT
- Title: POLARON: Precision-aware On-device Learning and Adaptive Runtime-cONfigurable AI acceleration
- Authors: Mukul Lokhande, Santosh Kumar Vishvakarma,
- Abstract summary: This work presents a SIMD-enabled, multi-precision MAC engine that performs efficient multiply-accumulate operations.<n>The architecture incorporates a layer adaptive precision strategy to align computational accuracy with workload sensitivity.<n>Results demonstrate up to 2x improvement in PDP and 3x reduction in resource usage compared to SoTA designs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing complexity of AI models requires flexible hardware capable of supporting diverse precision formats, particularly for energy-constrained edge platforms. This work presents PARV-CE, a SIMD-enabled, multi-precision MAC engine that performs efficient multiply-accumulate operations using a unified data-path for 4/8/16-bit fixed-point, floating point, and posit formats. The architecture incorporates a layer adaptive precision strategy to align computational accuracy with workload sensitivity, optimizing both performance and energy usage. PARV-CE integrates quantization-aware execution with a reconfigurable SIMD pipeline, enabling high-throughput processing with minimal overhead through hardware-software co-design. The results demonstrate up to 2x improvement in PDP and 3x reduction in resource usage compared to SoTA designs, while retaining accuracy within 1.8% FP32 baseline. The architecture supports both on-device training and inference across a range of workloads, including DNNs, RNNs, RL, and Transformer models. The empirical analysis establish PARVCE incorporated POLARON as a scalable and energy-efficient solution for precision-adaptive AI acceleration at edge.
Related papers
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Transformers with Joint Tokens and Local-Global Attention for Efficient Human Pose Estimation [34.99437411281915]
This paper proposes two ViT-based models for accurate, efficient, and robust 2D pose estimation.<n> Experiments on six benchmarks demonstrate that the proposed methods significantly outperform state-of-the-art methods.
arXiv Detail & Related papers (2025-02-28T22:34:22Z) - Transformer^-1: Input-Adaptive Computation for Resource-Constrained Deployment [3.6219999155937113]
This paper proposes a Transformer$-1$ architecture to address the resource waste caused by fixed computation paradigms in deep learning models under dynamic scenarios.<n>In a benchmark test, our method reduces FLOPs by 42.7% and peak memory usage by 3% compared to the standard Transformer.<n>We also conducted experiments on several natural language processing tasks and achieved significant improvements in resource efficiency.
arXiv Detail & Related papers (2025-01-26T15:31:45Z) - Flex-PE: Flexible and SIMD Multi-Precision Processing Element for AI Workloads [0.0]
This work proposes a flexible and SIMD multiprecision processing element (FlexPE)<n>The proposed design achieves an improved throughput of up to 16X FxP4, 8X FxP8, 4X FxP16 and 1X FxP32 in pipeline mode with 100% time multiplexed hardware.
arXiv Detail & Related papers (2024-12-16T12:25:57Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Hardware-Software Co-optimised Fast and Accurate Deep Reconfigurable Spiking Inference Accelerator Architecture Design Methodology [2.968768532937366]
Spiking Neural Networks (SNNs) have emerged as a promising approach to improve the energy efficiency of machine learning models.
We develop a hardware-software co-optimisation strategy to port software-trained deep neural networks (DNN) to reduced-precision spiking models.
arXiv Detail & Related papers (2024-10-07T05:04:13Z) - Algorithm-Hardware Co-Design of Distribution-Aware Logarithmic-Posit Encodings for Efficient DNN Inference [4.093167352780157]
We introduce Logarithmic Posits (LP), an adaptive, hardware-friendly data type inspired by posits.
We also develop a novel genetic-algorithm based framework, LP Quantization (LPQ), to find optimal layer-wise LP parameters.
arXiv Detail & Related papers (2024-03-08T17:28:49Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.