CoSMoEs: Compact Sparse Mixture of Experts
- URL: http://arxiv.org/abs/2503.00245v1
- Date: Fri, 28 Feb 2025 23:25:11 GMT
- Title: CoSMoEs: Compact Sparse Mixture of Experts
- Authors: Patrick Huber, Akshat Shrivastava, Ernie Chang, Chinnadhurai Sankar, Ahmed Aly, Adithya Sagar,
- Abstract summary: We show how to enable Compact Sparse Mixture of Experts (CoSMoEs) for on-device inference.<n>In particular, we tackle the three main on-device dimensions: Quality, Memory and latency.<n>We introduce weight-decomposed experts, further improving the MoE model performance.
- Score: 14.576482330940262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sparse Mixture of Expert (MoE) models are popular foundational architectures at large scale, however, under-explored at smaller sizes. Here, we show how to enable Compact Sparse Mixture of Experts (CoSMoEs) for on-device inference. Specifically, we tackle the three main on-device dimensions: Quality, Memory and Latency. Along the quality axis, we show that in a fair evaluation (removing confounding factors) MoE architectures outperform FLOP-aligned dense models at on-device scale. We introduce weight-decomposed experts, further improving the MoE model performance. Regarding model memory and latency, we significantly improve model offloading efficiency and, in turn, reduce model inference latency.
Related papers
- MoE-CAP: Benchmarking Cost, Accuracy and Performance of Sparse Mixture-of-Experts Systems [26.493762260392284]
MoE-CAP is a benchmarking method for evaluating sparse MoE systems.<n>Its key innovation is a sparsity-aware CAP analysis model, the first to integrate cost, performance, and accuracy metrics into a single diagram.
arXiv Detail & Related papers (2024-12-10T00:19:28Z) - HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference.
Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency.
HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.
arXiv Detail & Related papers (2024-11-03T04:25:46Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - A Provably Effective Method for Pruning Experts in Fine-tuned Sparse Mixture-of-Experts [49.394145046409044]
This paper provides the first provably efficient technique for pruning experts in finetuned MoE models.
We theoretically prove that prioritizing the pruning of the experts with a smaller change of the routers l2 norm from the pretrained model guarantees the preservation of test accuracy.
Although our theoretical analysis is centered on binary classification tasks on simplified MoE architecture, our expert pruning method is verified on large vision MoE models.
arXiv Detail & Related papers (2024-05-26T17:52:58Z) - LLaVA-Gemma: Accelerating Multimodal Foundation Models with a Compact Language Model [4.6373877301731]
We train a suite of multimodal foundation models (MMFM) using the popular LLaVA framework with the recently released Gemma family of large language models (LLMs)
We test the effect of ablating three design features: pretraining the connector, utilizing a more powerful image backbone, and increasing the size of the language backbone.
The resulting models, which we call LLaVA-Gemma, exhibit moderate performance on an array of evaluations, but fail to improve past the current comparably sized SOTA models.
arXiv Detail & Related papers (2024-03-29T21:32:50Z) - Mixture of Quantized Experts (MoQE): Complementary Effect of Low-bit
Quantization and Robustness [10.196942053244468]
Large Mixture of Experts (MoE) models could achieve state-of-the-art quality on various language tasks.
MoQE is a simple weight-only quantization method applying ultra low-bit down to 2-bit quantizations only to expert weights.
We show that low-bit quantization together with the MoE architecture delivers a reliable model performance.
arXiv Detail & Related papers (2023-10-03T20:11:23Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
We present a novel MoE architecture based on matrix product operators (MPO) from quantum many-body physics.
With the decomposed MPO structure, we can reduce the parameters of the original MoE architecture.
Experiments on the three well-known downstream natural language datasets based on GPT2 show improved performance and efficiency in increasing model capacity.
arXiv Detail & Related papers (2022-03-02T13:44:49Z) - Efficient Large Scale Language Modeling with Mixtures of Experts [61.45159383372181]
Mixture of Experts layers (MoEs) enable efficient scaling of language models through conditional computation.
This paper presents a detailed empirical study of how autoregressive MoE language models scale in comparison with dense models in a wide range of settings.
arXiv Detail & Related papers (2021-12-20T17:05:11Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.