MoE-CAP: Benchmarking Cost, Accuracy and Performance of Sparse Mixture-of-Experts Systems
- URL: http://arxiv.org/abs/2412.07067v3
- Date: Sun, 02 Mar 2025 16:40:03 GMT
- Title: MoE-CAP: Benchmarking Cost, Accuracy and Performance of Sparse Mixture-of-Experts Systems
- Authors: Yao Fu, Yinsicheng Jiang, Yeqi Huang, Ping Nie, Zhan Lu, Leyang Xue, Congjie He, Man-Kit Sit, Jilong Xue, Li Dong, Ziming Miao, Kai Zou, Edoardo Ponti, Luo Mai,
- Abstract summary: MoE-CAP is a benchmarking method for evaluating sparse MoE systems.<n>Its key innovation is a sparsity-aware CAP analysis model, the first to integrate cost, performance, and accuracy metrics into a single diagram.
- Score: 26.493762260392284
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Mixture-of-Experts (MoE) architecture is increasingly favored for scaling Large Language Models (LLMs). Its key feature, sparse activation, selectively activates only a subset of parameters (experts) per token, reducing memory bandwidth and compute FLOPs compared to dense models. To capitalize on this, MoE designers leverage heterogeneous compute and memory hardware to lower system costs. However, the interaction between model sparsity and hardware heterogeneity introduces trade-offs in Cost, Accuracy, and Performance (CAP). To address this, we introduce MoE-CAP, a benchmarking method for evaluating sparse MoE systems across these three dimensions. Its key innovation is a sparsity-aware CAP analysis model, the first to integrate cost, performance, and accuracy metrics into a single diagram while estimating the impact of sparsity on system performance. MoE-CAP helps practitioners optimize hardware provisioning for an MoE model-or vice versa. MoE-CAP supports various MoE models and provides more accurate metrics than existing methods.
Related papers
- Samoyeds: Accelerating MoE Models with Structured Sparsity Leveraging Sparse Tensor Cores [13.089178890203652]
This paper presents Samoyeds, an innovative acceleration system for MoE LLMs utilizing Sparse Cores (SpTCs)
It introduces a bespoke sparse data format tailored for MoE computation and develops a specialized sparse-sparse matrix multiplication kernel.
Evaluations show that Samoyeds outperforms SOTA works by up to 1.99$times$ at the kernel level and 1.58$times$ at the model level.
arXiv Detail & Related papers (2025-03-13T10:34:15Z) - ResMoE: Space-efficient Compression of Mixture of Experts LLMs via Residual Restoration [61.579842548990754]
Mixture-of-Experts (MoE) Transformer, the backbone of multiple phenomenal language models, leverages sparsity by activating only a fraction of model parameters for each input token.
We introduce ResMoE, an innovative MoE approximation framework that utilizes Wasserstein barycenter to extract a common expert (barycenter expert) and approximate the residuals between this barycenter expert and the original ones.
arXiv Detail & Related papers (2025-03-10T03:15:54Z) - CoSMoEs: Compact Sparse Mixture of Experts [14.576482330940262]
We show how to enable Compact Sparse Mixture of Experts (CoSMoEs) for on-device inference.
In particular, we tackle the three main on-device dimensions: Quality, Memory and latency.
We introduce weight-decomposed experts, further improving the MoE model performance.
arXiv Detail & Related papers (2025-02-28T23:25:11Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Selective State Space Memory for Large Vision-Language Models [0.0]
State Space Memory Integration (SSMI) is a novel approach for efficient fine-tuning of LVLMs.
SSMI captures long-range dependencies and injects task-specific visual and sequential patterns effectively.
experiments on benchmark datasets, including COCO Captioning, VQA, and Flickr30k, demonstrate that SSMI achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-12-13T05:40:50Z) - HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference.
Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency.
HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.
arXiv Detail & Related papers (2024-11-03T04:25:46Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE.
Our results demonstrate an average 21% improvement in prefill throughput over existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - Layerwise Recurrent Router for Mixture-of-Experts [42.36093735411238]
Mixture-of-Experts (MoE) architecture stands out for its ability to scale model size without significantly increasing training costs.
Current MoE models often display parameter inefficiency.
We introduce the Layerwise Recurrent Router for Mixture-of-Experts (RMoE)
arXiv Detail & Related papers (2024-08-13T10:25:13Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
We introduce SEER-MoE, a framework for reducing both the memory footprint and compute requirements of pre-trained MoE models.
The first stage involves pruning the total number of experts using a heavy-hitters counting guidance, while the second stage employs a regularization-based fine-tuning strategy to recover accuracy loss.
Our empirical studies demonstrate the effectiveness of our method, resulting in a sparse MoEs model optimized for inference efficiency with minimal accuracy trade-offs.
arXiv Detail & Related papers (2024-04-07T22:13:43Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [49.32669226551026]
We propose a simple yet effective training strategy MoE-Tuning for LVLMs.
MoE-LLaVA, a MoE-based sparse LVLM architecture, uniquely activates only the top-k experts through routers.
Experiments show the significant performance of MoE-LLaVA in a variety of visual understanding and object hallucination benchmarks.
arXiv Detail & Related papers (2024-01-29T08:13:40Z) - Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference [23.207326766883405]
Mixture-of-Experts (MoE) is able to scale its model size without proportionally scaling up its computational requirements.
Pre-gated MoE employs our novel pre-gating function which alleviates the dynamic nature of sparse expert activation.
We demonstrate that Pre-gated MoE is able to improve performance, reduce GPU memory consumption, while also maintaining the same level of model quality.
arXiv Detail & Related papers (2023-08-23T11:25:37Z) - Cheaply Evaluating Inference Efficiency Metrics for Autoregressive
Transformer APIs [66.30706841821123]
Large language models (LLMs) power many state-of-the-art systems in natural language processing.
LLMs are extremely computationally expensive, even at inference time.
We propose a new metric for comparing inference efficiency across models.
arXiv Detail & Related papers (2023-05-03T21:51:42Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.