論文の概要: Particle-based plasma simulation using a graph neural network
- arxiv url: http://arxiv.org/abs/2503.00274v1
- Date: Sat, 01 Mar 2025 01:07:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:13:23.345050
- Title: Particle-based plasma simulation using a graph neural network
- Title(参考訳): グラフニューラルネットワークを用いた粒子プラズマシミュレーション
- Authors: Marin Mlinarević, George K. Holt, Adriano Agnello,
- Abstract要約: このモデルは2桁の精度で従来のシミュレーションよりも長い時間ステップで精度を向上する。
この研究は、複雑なプラズマ力学を学習できることを示し、高速な微分可能シミュレータの開発を約束することを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A surrogate model for particle-in-cell plasma simulations based on a graph neural network is presented. The graph is constructed in such a way as to enable the representation of electromagnetic fields on a fixed spatial grid. The model is applied to simulate beams of electrons in one dimension over a wide range of temperatures, drift momenta and densities, and is shown to reproduce two-stream instabilities - a common and fundamental plasma instability. Qualitatively, the characteristic phase-space mixing of counterpropagating electron beams is observed. Quantitatively, the model's performance is evaluated in terms of the accuracy of its predictions of number density distributions, the electric field, and their Fourier decompositions, particularly the growth rate of the fastest-growing unstable mode, as well as particle position, momentum distributions, energy conservation and run time. The model achieves high accuracy with a time step longer than conventional simulation by two orders of magnitude. This work demonstrates that complex plasma dynamics can be learned and shows promise for the development of fast differentiable simulators suitable for solving forward and inverse problems in plasma physics.
- Abstract(参考訳): グラフニューラルネットワークに基づく細胞内粒子プラズマシミュレーションのための代理モデルを提案する。
このグラフは、固定された空間格子上の電磁場の表現を可能にするように構築される。
このモデルは、幅広い温度、ドリフトモーメント、密度で1次元の電子ビームをシミュレートするために適用され、2列不安定性(一般的なプラズマ不安定性)を再現することが示されている。
定性的には、反伝播電子ビームの特徴的な位相空間混合が観察される。
モデルの性能は, 数値密度分布, 電場, フーリエ分解の予測精度, 特に速度の速い不安定モードの成長速度, 粒子位置, 運動量分布, エネルギー保存, 実行時間から評価する。
このモデルは2桁の精度で従来のシミュレーションよりも長い時間ステップで精度を向上する。
この研究は、複雑なプラズマ力学を学習できることを示し、プラズマ物理学における前方および逆問題の解法に適した高速微分可能シミュレータの開発を約束することを示した。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間列を表現するために設計された新しい深部力学モデルを提案する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
振動系, ビデオ, 実世界の状態系列(MuJoCo)の実験結果から, 学習可能なエネルギーベース先行モデルの方が既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Enhancing predictive capabilities in fusion burning plasmas through surrogate-based optimization in core transport solvers [0.0]
本研究では,コアプラズマプロファイルの予測と非線形ジャイロキネティックシミュレーションによる性能評価が可能な PortalS フレームワークを提案する。
PortALSの効率は標準手法とベンチマークされ、GPU加速非線形CGYROを用いたDIII-D ITER類似形状プラズマにおいて、その全電位は、一意に5チャネルの定常プロファイルを同時に予測する。
また, 燃焼プラズマにおける正確な性能予測と, 核融合実験における輸送モデルの影響について概説した。
論文 参考訳(メタデータ) (2023-12-19T21:33:00Z) - Plasma Surrogate Modelling using Fourier Neural Operators [57.52074029826172]
トカマク炉内のプラズマの進化を予測することは、持続可能な核融合の目標を実現するために不可欠である。
深層学習に基づく代理モデルツールviz., Neural Operators (FNO) を用いた進化プラズマの正確な予測を実証する。
我々は、FNOが磁気流体力学モデルからシミュレーションされたプラズマ力学を予測する際に、従来の解法よりも6桁の速度を持つことを示した。
FNOは、MASTトカマク内のカメラで観測された実世界の実験データに基づいて、プラズマの進化を予測することもできる。
論文 参考訳(メタデータ) (2023-11-10T10:05:00Z) - Hybridizing Physics and Neural ODEs for Predicting Plasma Inductance
Dynamics in Tokamak Fusion Reactors [0.0]
我々は、Alcator C-Mod核融合炉のデータに基づいて、物理モデルとニューラルネットワークモデルの両方を訓練する。
物理に基づく方程式をニューラルODEと組み合わせたモデルは、既存の物理動機付きODEと純粋なニューラルODEモデルの両方よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-10-30T23:25:54Z) - Learning the dynamics of a one-dimensional plasma model with graph neural networks [0.0]
本モデルでは, 1次元プラズマモデルの動的プラズマ力学を学習する。
本研究は, 実時間, 保存法則, キー物理量の時間的変化の観点から, 元のプラズマモデルと性能を比較した。
論文 参考訳(メタデータ) (2023-10-26T17:58:12Z) - Fast Dynamic 1D Simulation of Divertor Plasmas with Neural PDE
Surrogates [3.6443770850509423]
ダイバータプラズマの管理は、ダイバータターゲットの熱と粒子フラックスの制約により、原子炉スケールトカマク装置の動作に不可欠である。
我々は、古典的数値法で生成した解を用いて訓練された、データ駆動型ニューラルネットワークに基づくサロゲートモデルである、ニューラルPDEサロゲートを用いた高速シミュレータの欠如に対処する。
我々は,上流密度ランプによって誘導されるダイナミックスで現実的なTCVダイバータプラズマをシミュレートし,高速な過渡現象への探索的展望を提供する。
論文 参考訳(メタデータ) (2023-05-30T11:20:14Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
パラメトリックダウンコンバージョンによって生成される絡み合ったツインビームは、画像指向アプリケーションで好まれるソースである。
本研究では,時間消費数値シミュレーションと非現実的な平面波ポンプ理論のギャップを埋めることを目的とした半解析モデルを提案する。
論文 参考訳(メタデータ) (2023-01-18T11:29:49Z) - Unsupervised Discovery of Inertial-Fusion Plasma Physics using
Differentiable Kinetic Simulations and a Maximum Entropy Loss Function [77.34726150561087]
プラズマ運動学3次元偏微分方程式の微分可能解法を作成し, 領域固有の目的関数を導入する。
我々はこの枠組みを慣性融合に関する構成に適用し、最適化プロセスが新しい物理効果を利用することを示す。
論文 参考訳(メタデータ) (2022-06-03T15:27:33Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
2次元相関電子モデルにおいて、競合する秩序相の微視的ダイナミクスについて検討する。
2つの競合する位相間の光誘起遷移をシミュレートする。
論文 参考訳(メタデータ) (2022-05-13T13:13:31Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
固体系において確立されたツールである時間依存性光電子分光法を低温原子量子シミュレーターに応用することを提案する。
1次元の$t-J$モデルの正確な対角化シミュレーションで、スピノンが非占有状態の効率的なバンド構造に出現し始めることを示す。
ポンプパルス後のスペクトル関数の依存性はスピノン間の集団的相互作用を明らかにする。
論文 参考訳(メタデータ) (2021-05-27T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。