論文の概要: Enhancing predictive capabilities in fusion burning plasmas through surrogate-based optimization in core transport solvers
- arxiv url: http://arxiv.org/abs/2312.12610v2
- Date: Tue, 9 Apr 2024 20:42:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 18:56:10.864754
- Title: Enhancing predictive capabilities in fusion burning plasmas through surrogate-based optimization in core transport solvers
- Title(参考訳): 核輸送ソルバの代理最適化による核融合燃焼プラズマの予測能力向上
- Authors: P. Rodriguez-Fernandez, N. T. Howard, A. Saltzman, S. Kantamneni, J. Candy, C. Holland, M. Balandat, S. Ament, A. E. White,
- Abstract要約: 本研究では,コアプラズマプロファイルの予測と非線形ジャイロキネティックシミュレーションによる性能評価が可能な PortalS フレームワークを提案する。
PortALSの効率は標準手法とベンチマークされ、GPU加速非線形CGYROを用いたDIII-D ITER類似形状プラズマにおいて、その全電位は、一意に5チャネルの定常プロファイルを同時に予測する。
また, 燃焼プラズマにおける正確な性能予測と, 核融合実験における輸送モデルの影響について概説した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents the PORTALS framework, which leverages surrogate modeling and optimization techniques to enable the prediction of core plasma profiles and performance with nonlinear gyrokinetic simulations at significantly reduced cost, with no loss of accuracy. The efficiency of PORTALS is benchmarked against standard methods, and its full potential is demonstrated on a unique, simultaneous 5-channel (electron temperature, ion temperature, electron density, impurity density and angular rotation) prediction of steady-state profiles in a DIII-D ITER Similar Shape plasma with GPU-accelerated, nonlinear CGYRO. This paper also provides general guidelines for accurate performance predictions in burning plasmas and the impact of transport modeling in fusion pilot plants studies.
- Abstract(参考訳): 本研究は,サロゲートモデリングと最適化技術を活用して,非線形ジャイロキネティックシミュレーションによるコアプラズマプロファイルの予測と性能を,精度を損なわずに大幅に低減した。
PortALSの効率は標準手法とベンチマークされ、その全電位はGPU加速非線形CGYROを用いたDIII-D ITER類似形状プラズマにおける一意に同時5チャネル(電子温度、イオン温度、電子密度、不純物密度、角回転)予測で示される。
また, 燃焼プラズマにおける正確な性能予測と, 核融合実験における輸送モデルの影響について概説した。
関連論文リスト
- Nonlinear bayesian tomography of ion temperature and velocity for Doppler coherence imaging spectroscopy in RT-1 [0.0]
我々はコヒーレンスイメージング分光法(CIS)のための新しいベイズトモグラフィー手法を提案する。
プラズマ中のイオン温度と速度分布を同時に再構成する。
この研究はCISトモグラフィーの範囲を大きく広げ、プラズマ診断のための堅牢なツールを提供する。
論文 参考訳(メタデータ) (2024-10-16T10:07:07Z) - Application of Neural Ordinary Differential Equations for ITER Burning Plasma Dynamics [0.0]
トカマクの燃焼プラズマのダイナミクスは、制御熱核融合の進行に不可欠である。
本研究では, ITER重水素トリチウム(D-T)プラズマの複雑なエネルギー伝達過程をシミュレートするためにNeuralPlasmaODEを導入する。
論文 参考訳(メタデータ) (2024-08-26T16:47:20Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
生成モデルのための新しいスペクトル対応適応フレームワークを提案する。
本手法は,事前学習した重みの特異値とその基底ベクトルを調節する。
本稿では,計算効率と表現能力のバランスをとるスペクトルオーソ分解適応(SODA)を提案する。
論文 参考訳(メタデータ) (2024-05-31T17:43:35Z) - Data-driven local operator finding for reduced-order modelling of plasma
systems: I. Concept and verifications [2.9320342785886973]
低次プラズマモデルでは、様々な設定や構成で効率的にプラズマの挙動を予測することができる。
この2つの記事では、"Phi Method"を紹介します。
第1部では,候補項ライブラリに制約付き回帰を用いた新しいアルゴリズムを提案する。
パートIIは、パラメトリックダイナミクス発見のためのメソッドの応用を掘り下げる。
論文 参考訳(メタデータ) (2024-03-03T14:50:15Z) - Plasma Surrogate Modelling using Fourier Neural Operators [57.52074029826172]
トカマク炉内のプラズマの進化を予測することは、持続可能な核融合の目標を実現するために不可欠である。
深層学習に基づく代理モデルツールviz., Neural Operators (FNO) を用いた進化プラズマの正確な予測を実証する。
我々は、FNOが磁気流体力学モデルからシミュレーションされたプラズマ力学を予測する際に、従来の解法よりも6桁の速度を持つことを示した。
FNOは、MASTトカマク内のカメラで観測された実世界の実験データに基づいて、プラズマの進化を予測することもできる。
論文 参考訳(メタデータ) (2023-11-10T10:05:00Z) - Toward High-Performance Energy and Power Battery Cells with Machine
Learning-based Optimization of Electrode Manufacturing [61.27691515336054]
本研究では,所望のバッテリ適用条件に対する高性能電極の課題に対処する。
本稿では、電気化学性能の2目的最適化のための決定論的機械学習(ML)支援パイプラインによって支援される強力なデータ駆動アプローチを提案する。
以上の結果から,スラリー中の固形物の中間値とカレンダリング度を併用した高活性物質が最適電極となることが示唆された。
論文 参考訳(メタデータ) (2023-07-07T13:48:50Z) - Deep Learning assisted microwave-plasma interaction based technique for
plasma density estimation [1.4680035572775534]
本稿では,マイクロ波-プラズマ相互作用に基づく非侵襲的診断を支援するDeep Learning (DL)を提案する。
プラズマからのマイクロ波散乱による電界パターンを利用して密度分布を推定する。
得られた結果から,線状プラズマ装置の密度の2次元半径分布を推定する上で有望な性能を示した。
論文 参考訳(メタデータ) (2023-04-28T12:27:23Z) - Unsupervised Discovery of Inertial-Fusion Plasma Physics using
Differentiable Kinetic Simulations and a Maximum Entropy Loss Function [77.34726150561087]
プラズマ運動学3次元偏微分方程式の微分可能解法を作成し, 領域固有の目的関数を導入する。
我々はこの枠組みを慣性融合に関する構成に適用し、最適化プロセスが新しい物理効果を利用することを示す。
論文 参考訳(メタデータ) (2022-06-03T15:27:33Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Turbulent field fluctuations in gyrokinetic and fluid plasmas [0.0]
磁気閉じ込め核融合炉の設計・開発における重要な不確実性は、エッジプラズマの乱流を予測することである。
ドリフト還元ブラジンスキー二流体理論は、実験において何十年にもわたってシミュレーションされた境界プラズマを持つ還元方程式の集合である。
静電二流体理論と電磁ジャイロキネティック・モデリングの乱流変動に関する最初の直接的定量的比較を行った。
論文 参考訳(メタデータ) (2021-07-20T19:50:30Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。