論文の概要: CADRef: Robust Out-of-Distribution Detection via Class-Aware Decoupled Relative Feature Leveraging
- arxiv url: http://arxiv.org/abs/2503.00325v2
- Date: Fri, 14 Mar 2025 02:11:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:03:51.640830
- Title: CADRef: Robust Out-of-Distribution Detection via Class-Aware Decoupled Relative Feature Leveraging
- Title(参考訳): CADRef: クラスアウェアで分離した相対的特徴レバレッジによるロバストなアウト・オブ・ディストリビューション検出
- Authors: Zhiwei Ling, Yachen Chang, Hailiang Zhao, Xinkui Zhao, Kingsum Chow, Shuiguang Deng,
- Abstract要約: CARef(Class-Aware Relative Feature-based Method)とCADRef(Class-Aware Decoupled Relative Feature-based Method)を提案する。
両手法は, 最先端手法と比較してOOD検出の有効性とロバスト性を示した。
- 参考スコア(独自算出の注目度): 5.356623181327855
- License:
- Abstract: Deep neural networks (DNNs) have been widely criticized for their overconfidence when dealing with out-of-distribution (OOD) samples, highlighting the critical need for effective OOD detection to ensure the safe deployment of DNNs in real-world settings. Existing post-hoc OOD detection methods primarily enhance the discriminative power of logit-based approaches by reshaping sample features, yet they often neglect critical information inherent in the features themselves. In this paper, we propose the Class-Aware Relative Feature-based method (CARef), which utilizes the error between a sample's feature and its class-aware average feature as a discriminative criterion. To further refine this approach, we introduce the Class-Aware Decoupled Relative Feature-based method (CADRef), which decouples sample features based on the alignment of signs between the relative feature and corresponding model weights, enhancing the discriminative capabilities of CARef. Extensive experimental results across multiple datasets and models demonstrate that both proposed methods exhibit effectiveness and robustness in OOD detection compared to state-of-the-art methods. Specifically, our two methods outperform the best baseline by 2.82% and 3.27% in AUROC, with improvements of 4.03% and 6.32% in FPR95, respectively.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、オフ・オブ・ディストリビューション(OOD)サンプルを扱う際に、その過信を広く批判されており、実際の環境でのDNNの安全なデプロイを保証するための効果的なOOD検出の必要性を強調している。
既存のポストホックなOOD検出手法は、主にサンプルの特徴を再構成することでロジットベースのアプローチの識別力を高めるが、それらは特徴自体に固有の重要な情報を無視することが多い。
本稿では,サンプル特徴とクラス認識平均特徴との誤差を識別基準として利用するクラス認識相対的特徴ベース手法(CARef)を提案する。
このアプローチをさらに洗練するために,相対的特徴と対応するモデル重みの符号のアライメントに基づいてサンプル特徴を分離するCADRef(Class-Aware Decoupled Relative Feature-based Method)を導入し,CARefの識別能力を向上する。
複数のデータセットやモデルにまたがる大規模な実験結果から、提案手法は、最先端手法と比較して、OOD検出の有効性とロバスト性を示した。
具体的には,AUROCでは2.82%,AUROCでは3.27%,FPR95では4.03%,FPR95では6.32%であった。
関連論文リスト
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
オープンセットのシナリオでは、ラベルなしデータセットには、イン・ディストリビューション(ID)クラスとアウト・オブ・ディストリビューション(OOD)クラスの両方が含まれている。
このような設定で半教師付き検出器を適用すると、OODクラスをIDクラスとして誤分類する可能性がある。
我々は、CFL-Detector(Collaborative Feature-Logits Detector)と呼ばれるシンプルで効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-11-20T02:57:35Z) - Look Around and Find Out: OOD Detection with Relative Angles [24.369626931550794]
本稿では, 分布内構造に対して計算されるOOD検出のための新しい角度に基づく計量法を提案する。
提案手法は, CIFAR-10 と ImageNet ベンチマークの最先端性能を実現し, FPR95 を 0.88% と 7.74% 削減した。
論文 参考訳(メタデータ) (2024-10-06T15:36:07Z) - Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
本稿では,非自明なOOD検出問題に対処するため,Margin bounded Confidence Scores (MaCS) と呼ばれる新しい手法を提案する。
MaCS は ID と OOD のスコアの差を拡大し、決定境界をよりコンパクトにする。
画像分類タスクのための様々なベンチマークデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-22T05:40:25Z) - FlowCon: Out-of-Distribution Detection using Flow-Based Contrastive Learning [0.0]
我々は新しい密度に基づくOOD検出技術であるtextitFlowConを紹介する。
我々の主な革新は、正規化フローの特性と教師付きコントラスト学習を効率的に組み合わせることである。
経験的評価は、一般的な視覚データセットにまたがる手法の性能向上を示す。
論文 参考訳(メタデータ) (2024-07-03T20:33:56Z) - Continual Evidential Deep Learning for Out-of-Distribution Detection [20.846788009755183]
不確実性に基づくディープラーニングモデルは、正確で信頼性の高い予測を提供する能力に対して、大きな関心を集めている。
Evidential Deep Learningは、単一決定論的ニューラルネットワークによるアウト・オブ・ディストリビューション(OOD)データの検出において、優れたパフォーマンスを実現している。
本稿では,オブジェクト分類とOOD検出を同時に行うために,明らかなディープラーニング手法を連続的な学習フレームワークに統合することを提案する。
論文 参考訳(メタデータ) (2023-09-06T13:36:59Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
安全(r)AIとの関連性を考えると,OOD検出法の比較の基礎が実用的ニーズと整合しているかどうかを検討することが重要である。
我々は,IDとOODの分離が不十分なことを明示する新しい指標であるAUTC(Area Under the Threshold Curve)を提案する。
論文 参考訳(メタデータ) (2023-06-26T12:51:32Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
我々は、識別器モデルが入力の特定の特徴に対してより敏感であることを示唆する新しいパーセプトロンバイアスの仮定を導入し、過度な問題を引き起こした。
DMの拡散分解過程 (DDP) が非対称の新たな形態として機能し, 入力を高め, 過信問題を緩和するのに適していることを示す。
CIFAR10, CIFAR100, ImageNetによる実験により, 提案手法がSOTA手法より優れていることが示された。
論文 参考訳(メタデータ) (2022-11-21T08:45:08Z) - How to Exploit Hyperspherical Embeddings for Out-of-Distribution
Detection? [22.519572587827213]
CIDERは、OOD検出に超球面埋め込みを利用する表現学習フレームワークである。
CIDERは優れたパフォーマンスを確立し、FPR95では19.36%で最新のライバルを上回った。
論文 参考訳(メタデータ) (2022-03-08T23:44:01Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。