論文の概要: Human-like object concept representations emerge naturally in multimodal large language models
- arxiv url: http://arxiv.org/abs/2407.01067v1
- Date: Mon, 1 Jul 2024 08:17:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 22:29:17.286870
- Title: Human-like object concept representations emerge naturally in multimodal large language models
- Title(参考訳): マルチモーダル大言語モデルに自然に現れる人間のような物体概念表現
- Authors: Changde Du, Kaicheng Fu, Bincheng Wen, Yi Sun, Jie Peng, Wei Wei, Ying Gao, Shengpei Wang, Chuncheng Zhang, Jinpeng Li, Shuang Qiu, Le Chang, Huiguang He,
- Abstract要約: 大規模言語モデルにおける対象概念の表現が人間とどのように関連しているかを明らかにするために,行動解析と神経画像解析を併用した。
その結果,66次元の埋め込みは非常に安定で予測的であり,人間の心的表現に類似したセマンティッククラスタリングが認められた。
本研究は、機械知能の理解を深め、より人間的な人工知能システムの開発を知らせるものである。
- 参考スコア(独自算出の注目度): 24.003766123531545
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The conceptualization and categorization of natural objects in the human mind have long intrigued cognitive scientists and neuroscientists, offering crucial insights into human perception and cognition. Recently, the rapid development of Large Language Models (LLMs) has raised the attractive question of whether these models can also develop human-like object representations through exposure to vast amounts of linguistic and multimodal data. In this study, we combined behavioral and neuroimaging analysis methods to uncover how the object concept representations in LLMs correlate with those of humans. By collecting large-scale datasets of 4.7 million triplet judgments from LLM and Multimodal LLM (MLLM), we were able to derive low-dimensional embeddings that capture the underlying similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were found to be highly stable and predictive, and exhibited semantic clustering akin to human mental representations. Interestingly, the interpretability of the dimensions underlying these embeddings suggests that LLM and MLLM have developed human-like conceptual representations of natural objects. Further analysis demonstrated strong alignment between the identified model embeddings and neural activity patterns in many functionally defined brain ROIs (e.g., EBA, PPA, RSC and FFA). This provides compelling evidence that the object representations in LLMs, while not identical to those in the human, share fundamental commonalities that reflect key schemas of human conceptual knowledge. This study advances our understanding of machine intelligence and informs the development of more human-like artificial cognitive systems.
- Abstract(参考訳): 人間の心における自然の物体の概念化と分類は、認知科学者や神経科学者に長年興味を持ち、人間の知覚と認知の重要な洞察を与えてきた。
近年,Large Language Models (LLMs) の急速な発展により,膨大な言語およびマルチモーダルデータに曝露することで,これらのモデルが人間のようなオブジェクト表現を開発できるかどうかという,魅力的な疑問が持ち上がっている。
本研究では、行動解析と神経画像解析を併用し、LLMにおける物体概念表現が人間のものとどのように相関するかを明らかにする。
LLMとMultimodal LLM(MLLM)から470万の3重項判定の大規模データセットを収集することにより、我々は1,854個の自然物体の基本的な類似性構造を捉えた低次元の埋め込みを導出することができた。
その結果,66次元の埋め込みは非常に安定で予測的であり,人間の心的表現に類似したセマンティッククラスタリングが認められた。
興味深いことに、これらの埋め込みの基礎となる次元の解釈可能性から、LLMとMLLMが自然物体の人間的な概念表現を開発したことが示唆されている。
さらに, 機能的に定義された多くの脳ROI(例えば, EBA, PPA, RSC, FFA)において, 同定されたモデル埋め込みと神経活動パターンとの間に強い相関が認められた。
これは、LLMのオブジェクト表現が人間と同一ではないが、人間の概念的知識の重要なスキーマを反映した基本的な共通点を共有しているという説得力のある証拠を提供する。
本研究は、機械知能の理解を深め、より人間的な人工知能システムの開発を知らせるものである。
関連論文リスト
- Human-Centric Foundation Models: Perception, Generation and Agentic Modeling [79.97999901785772]
人間中心のファンデーションモデルは、多様な人間中心のタスクを単一のフレームワークに統合します。
我々は,現在のアプローチを4つのグループに分類する分類法を提案することで,HcFMの包括的概要を示す。
この調査は、より堅牢で汎用的でインテリジェントなデジタルヒューマン・エンボディメントモデリングを目指す研究者や実践者のロードマップとして機能することを目的としている。
論文 参考訳(メタデータ) (2025-02-12T16:38:40Z) - Human-like conceptual representations emerge from language prediction [72.5875173689788]
大型言語モデル(LLM)における人間に似た概念表現の出現について検討した。
その結果、LLMは定義記述から概念を推論し、共有された文脈に依存しない構造に収束する表現空間を構築することができた。
我々の研究は、LLMが複雑な人間の認知を理解するための貴重なツールであり、人工知能と人間の知能の整合性を高めるための道を開くという見解を支持している。
論文 参考訳(メタデータ) (2025-01-21T23:54:17Z) - Large language models for artificial general intelligence (AGI): A survey of foundational principles and approaches [0.0]
MLLM(Multimodal large language model)は、多種多様なデータソースから学習する。
この驚くべき偉業にもかかわらず、大規模なデータセットで訓練された最先端のLLMの認知能力は、まだ表面的で不安定だ。
本稿では, エンボディメント, シンボル接地, 因果性, 記憶の原理を, 有機的手法で人工知能(AGI)の達成に活用する方法について論じる。
論文 参考訳(メタデータ) (2025-01-06T17:18:47Z) - Humanlike Cognitive Patterns as Emergent Phenomena in Large Language Models [2.9312156642007294]
我々は、意思決定バイアス、推論、創造性の3つの重要な認知領域にわたって、大規模言語モデルの能力を体系的にレビューする。
意思決定では、LSMはいくつかの人間のようなバイアスを示すが、人間の観察するバイアスは欠落している。
GPT-4のような先進的なLCMは、人間のシステム2思考に似た熟考的推論を示し、小さなモデルは人間レベルの性能に欠ける。
LLMはストーリーテリングのような言語ベースの創造的なタスクに優れているが、現実の文脈を必要とする散発的な思考タスクに苦労する。
論文 参考訳(メタデータ) (2024-12-20T02:26:56Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Large language models as linguistic simulators and cognitive models in human research [0.0]
人間のようなテキストを生成する大きな言語モデル(LLM)の台頭は、行動や認知研究における人間の参加者を置き換える可能性についての議論を巻き起こした。
心理学・社会科学における言語モデルの基本的有用性を評価するために,この代替視点を批判的に評価する。
この視点は、行動科学と認知科学における言語モデルの役割を再定義し、言語シミュレータや認知モデルとして機能し、マシンインテリジェンスと人間の認知と思考の類似点と相違点に光を当てている。
論文 参考訳(メタデータ) (2024-02-06T23:28:23Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Unveiling Theory of Mind in Large Language Models: A Parallel to Single
Neurons in the Human Brain [2.5350521110810056]
大きな言語モデル(LLM)は、あるレベルの心の理論(ToM)を示すことが発見されている。
LLMのToMの能力や人間との類似性に基づく正確なプロセスはほとんど不明である。
論文 参考訳(メタデータ) (2023-09-04T15:26:15Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
1500万の画像テキストペアを事前訓練した,新たに設計されたマルチモーダル基礎モデルを提案する。
視覚的エンコーダも言語的エンコーダもマルチモーダルで訓練され,脳に近いことが判明した。
論文 参考訳(メタデータ) (2022-08-17T12:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。