Investigating the contribution of terrain-following coordinates and conservation schemes in AI-driven precipitation forecasts
- URL: http://arxiv.org/abs/2503.00332v2
- Date: Mon, 17 Mar 2025 16:06:25 GMT
- Title: Investigating the contribution of terrain-following coordinates and conservation schemes in AI-driven precipitation forecasts
- Authors: Yingkai Sha, John S. Schreck, William Chapman, David John Gagne II,
- Abstract summary: This study integrates terrain-following coordinates with global mass and energy conservation schemes into AIWP models.<n>The conservation schemes are found to reduce drizzle bias, whereas using terrain-following coordinates improves the estimation of extreme events and precipitation intensity spectra.<n>The proposed solution of this study can benefit a wide range of AIWP models and bring insights into how atmospheric domain knowledge can support the development of AIWP models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) weather prediction (AIWP) models often produce "blurry" precipitation forecasts that overestimate drizzle and underestimate extremes. This study provides a novel solution to tackle this problem -- integrating terrain-following coordinates with global mass and energy conservation schemes into AIWP models. Forecast experiments are conducted to evaluate the effectiveness of this solution using FuXi, an example AIWP model, adapted to 1.0-degree grid spacing data. Verification results show large performance gains. The conservation schemes are found to reduce drizzle bias, whereas using terrain-following coordinates improves the estimation of extreme events and precipitation intensity spectra. Furthermore, a case study reveals that terrain-following coordinates capture near-surface winds better over mountains, offering AIWP models more accurate information on understanding the dynamics of precipitation processes. The proposed solution of this study can benefit a wide range of AIWP models and bring insights into how atmospheric domain knowledge can support the development of AIWP models.
Related papers
- OMG-HD: A High-Resolution AI Weather Model for End-to-End Forecasts from Observations [11.729902584481767]
OMG-HD is an AI-based high-resolution weather forecasting model designed to make predictions directly from observational data sources.<n>We achieve up to a 13% improvement on RMSE for 2-meter temperature, 17% on 10-meter wind speed, 48% on 2-meter specific humidity, and 32% on surface pressure.
arXiv Detail & Related papers (2024-12-24T07:46:50Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
This study illustrates the relative strengths and weaknesses of physics-based and AI-based approaches to weather prediction.
A hybrid NWP-AI system is proposed, wherein GEM-predicted large-scale state variables are spectrally nudged toward GraphCast predictions.
Results indicate that this hybrid approach is capable of leveraging the strengths of GraphCast to enhance the prediction skill of the GEM model.
arXiv Detail & Related papers (2024-07-08T16:39:25Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Interpretable AI-Driven Discovery of Terrain-Precipitation Relationships
for Enhanced Climate Insights [8.780306158191443]
We propose an AI-driven knowledge discovery framework known as genetic algorithm-geographic weighted regression (GA-GWR)
Our approach seeks to unveil the explicit equations that govern the relationship between precipitation patterns and terrain characteristics in regions marked by complex terrain.
Through this AI-driven knowledge discovery, we uncover previously undisclosed explicit equations that shed light on the connection between terrain features and precipitation patterns.
arXiv Detail & Related papers (2023-09-27T04:47:22Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - IowaRain: A Statewide Rain Event Dataset Based on Weather Radars and
Quantitative Precipitation Estimation [0.0]
This study presents an extensive dataset of rainfall events for the state of Iowa.
It could be used for better disaster monitoring, response and recovery by paving the way for both predictive and prescriptive modeling.
arXiv Detail & Related papers (2021-07-07T18:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.