IowaRain: A Statewide Rain Event Dataset Based on Weather Radars and
Quantitative Precipitation Estimation
- URL: http://arxiv.org/abs/2107.03432v1
- Date: Wed, 7 Jul 2021 18:30:38 GMT
- Title: IowaRain: A Statewide Rain Event Dataset Based on Weather Radars and
Quantitative Precipitation Estimation
- Authors: Muhammed Sit, Bong-Chul Seo and Ibrahim Demir
- Abstract summary: This study presents an extensive dataset of rainfall events for the state of Iowa.
It could be used for better disaster monitoring, response and recovery by paving the way for both predictive and prescriptive modeling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective environmental planning and management to address climate change
could be achieved through extensive environmental modeling with machine
learning and conventional physical models. In order to develop and improve
these models, practitioners and researchers need comprehensive benchmark
datasets that are prepared and processed with environmental expertise that they
can rely on. This study presents an extensive dataset of rainfall events for
the state of Iowa (2016-2019) acquired from the National Weather Service Next
Generation Weather Radar (NEXRAD) system and processed by a quantitative
precipitation estimation system. The dataset presented in this study could be
used for better disaster monitoring, response and recovery by paving the way
for both predictive and prescriptive modeling.
Related papers
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - Data-driven rainfall prediction at a regional scale: a case study with Ghana [4.028179670997471]
State-of-the-art numerical weather prediction (NWP) models struggle to produce skillful rainfall forecasts in tropical regions of Africa.
We develop two U-Net convolutional neural network (CNN) models, to predict 24h rainfall at 12h and 30h lead-time.
We also find that combining our data-driven model with classical NWP further improves forecast accuracy.
arXiv Detail & Related papers (2024-10-17T22:07:53Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts [0.11249583407496218]
Air pollution poses a significant threat to public health and well-being, particularly in urban areas.
This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants.
arXiv Detail & Related papers (2024-05-30T10:02:53Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - A Distributed Approach to Meteorological Predictions: Addressing Data
Imbalance in Precipitation Prediction Models through Federated Learning and
GANs [0.0]
classification of weather data involves categorizing meteorological phenomena into classes, thereby facilitating nuanced analyses and precise predictions.
It's imperative that classification algorithms proficiently navigate challenges such as data imbalances.
Data augmentation techniques can improve the model's accuracy in classifying rare but critical weather events.
arXiv Detail & Related papers (2023-10-19T21:28:20Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - RainBench: Towards Global Precipitation Forecasting from Satellite
Imagery [6.462260770989231]
Extreme precipitation events routinely ravage economies and livelihoods around the developing world.
Data-driven deep learning approaches could widen the access to accurate multi-day forecasts.
There is currently no benchmark dataset dedicated to the study of global precipitation forecasts.
arXiv Detail & Related papers (2020-12-17T15:35:24Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.