論文の概要: SHAZAM: Self-Supervised Change Monitoring for Hazard Detection and Mapping
- arxiv url: http://arxiv.org/abs/2503.00348v1
- Date: Sat, 01 Mar 2025 04:45:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:15:36.584959
- Title: SHAZAM: Self-Supervised Change Monitoring for Hazard Detection and Mapping
- Title(参考訳): SHAZAM:ハザード検出とマッピングのための自己監視型変更監視
- Authors: Samuel Garske, Konrad Heidler, Bradley Evans, KC Wong, Xiao Xiang Zhu,
- Abstract要約: この研究は、危険検出とマッピングのためのSHAZAM - Self-Supervised Change Monitoringを提示する。
SHAZAMは軽量な条件付きUNetを使用して、その年のどの日でも関心のある領域のイメージを生成する。
修正された構造的類似度尺度は、生成された画像と実際の衛星観測を比較して、領域レベルの異常スコアとピクセルレベルのハザードマップを計算する。
- 参考スコア(独自算出の注目度): 13.471629436653249
- License:
- Abstract: The increasing frequency of environmental hazards due to climate change underscores the urgent need for effective monitoring systems. Current approaches either rely on expensive labelled datasets, struggle with seasonal variations, or require multiple observations for confirmation (which delays detection). To address these challenges, this work presents SHAZAM - Self-Supervised Change Monitoring for Hazard Detection and Mapping. SHAZAM uses a lightweight conditional UNet to generate expected images of a region of interest (ROI) for any day of the year, allowing for the direct modelling of normal seasonal changes and the ability to distinguish potential hazards. A modified structural similarity measure compares the generated images with actual satellite observations to compute region-level anomaly scores and pixel-level hazard maps. Additionally, a theoretically grounded seasonal threshold eliminates the need for dataset-specific optimisation. Evaluated on four diverse datasets that contain bushfires (wildfires), burned regions, extreme and out-of-season snowfall, floods, droughts, algal blooms, and deforestation, SHAZAM achieved F1 score improvements of between 0.066 and 0.234 over existing methods. This was achieved primarily through more effective hazard detection (higher recall) while using only 473K parameters. SHAZAM demonstrated superior mapping capabilities through higher spatial resolution and improved ability to suppress background features while accentuating both immediate and gradual hazards. SHAZAM has been established as an effective and generalisable solution for hazard detection and mapping across different geographical regions and a diverse range of hazards. The Python code is available at: https://github.com/WiseGamgee/SHAZAM
- Abstract(参考訳): 気候変動による環境問題の発生頻度の増加は、効果的な監視システムの必要性を浮き彫りにしている。
現在のアプローチでは、高価なラベル付きデータセットに依存するか、季節変動に苦労するか、あるいは確認のために複数の観測を必要とする(検出が遅れる)。
これらの課題に対処するため、本研究ではSHAZAM - Self-Supervised Change Monitoring for Hazard Detection and Mappingを提案する。
SHAZAMは軽量な条件付きUNetを使用して、通常の季節変化を直接モデル化し、潜在的な危険を識別する機能を実現するため、その年のどの日でも関心領域(ROI)の画像を生成する。
修正された構造的類似度尺度は、生成された画像と実際の衛星観測を比較して、領域レベルの異常スコアとピクセルレベルのハザードマップを計算する。
さらに、理論的に根拠付けられた季節的閾値は、データセット固有の最適化の必要性を排除します。
森林火災(山火事)、延焼地域、極端・アウト・オブ・シーズンの降雪、洪水、干ばつ、藻類、森林破壊を含む4つの多様なデータセットから評価し、SHAZAMは既存の手法に比べて0.066から0.234のF1スコアの改善を達成した。
これは主に473Kパラメータのみを使用しながら、より効果的なハザード検出(高いリコール)によって達成された。
SHAZAMは、空間分解能の向上と背景特性の抑制能力の向上により、即時および段階的ハザードの両方をアクセントし、優れたマッピング能力を示した。
SHAZAMは、地理的に異なる地域と多様なハザードを横断するハザード検出とマッピングのための、効果的で汎用的なソリューションとして確立されている。
Pythonコードは、https://github.com/WiseGamgee/SHAZAMで入手できる。
関連論文リスト
- SparseFormer: Detecting Objects in HRW Shots via Sparse Vision Transformer [62.11796778482088]
本稿では,近接撮影とHRW撮影のオブジェクト検出のギャップを埋めるために,SparseFormerと呼ばれるモデル非依存のスパース視覚変換器を提案する。
提案されたSparseFormerは、オブジェクトを含む可能性のあるスパース分散ウィンドウを精査するために、注意トークンを選択的に使用する。
2つのHRWベンチマークであるPANDAとDOTA-v1.0の実験により、提案されたSparseFormerは、最先端のアプローチよりも検出精度(最大5.8%)と速度(最大3倍)を大幅に改善することを示した。
論文 参考訳(メタデータ) (2025-02-11T03:21:25Z) - Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model [17.016411785224317]
DAVI(Disaster Assessment with Vision foundation model)は,ドメインの格差に対処し,ターゲット領域に接地トラストラベルを必要とせずに建物レベルで構造的損傷を検出する手法である。
DAVIは、ソース領域で訓練されたモデルからのタスク固有の知識と、イメージセグメンテーションモデルからのタスク非依存の知識を組み合わせて、ターゲット領域の潜在的な損傷を示す擬似ラベルを生成する。
次に、2段階の精錬プロセスを使用し、ピクセルレベルと画像レベルの両方で動作し、災害被害地域の変化を正確に識別する。
論文 参考訳(メタデータ) (2024-06-12T09:21:28Z) - BD-MSA: Body decouple VHR Remote Sensing Image Change Detection method
guided by multi-scale feature information aggregation [4.659935767219465]
リモートセンシング画像変化検出(RSCD)の目的は、同じ場所で撮影された両時間画像の違いを検出することである。
深層学習はRSCDタスクに広く使われており、結果認識の点で重要な結果をもたらしている。
論文 参考訳(メタデータ) (2024-01-09T02:53:06Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
神経性SLAMは近年顕著な進歩を遂げている。
既存の手法は、非理想的なシナリオにおいて重大な課題に直面します。
本稿では,最初のイベントRGBD暗黙的ニューラルSLAMフレームワークであるEN-SLAMを提案する。
論文 参考訳(メタデータ) (2023-11-18T08:48:58Z) - FLOGA: A machine learning ready dataset, a benchmark and a novel deep
learning model for burnt area mapping with Sentinel-2 [41.28284355136163]
森林火災は人間や動物の生活、生態系、社会経済の安定に重大な脅威をもたらす。
本研究では、FLOGA(Forest wiLdfire Observations for the Greek Area)と名付けた機械学習可能なデータセットを作成し、導入する。
このデータセットは、山火事の前後に取得された衛星画像からなるため、ユニークなものである。
我々はFLOGAを用いて、複数の機械学習アルゴリズムとディープラーニングアルゴリズムの徹底的な比較を行い、バーント領域の自動抽出を行う。
論文 参考訳(メタデータ) (2023-11-06T18:42:05Z) - Rapid Deforestation and Burned Area Detection using Deep Multimodal
Learning on Satellite Imagery [3.8073142980733]
アマゾンの森林における森林破壊の推定と火災検出は、広大な面積のために大きな課題となっている。
マルチモーダル衛星画像とリモートセンシングは、アマゾン地域の森林破壊を推定し、山火事を検出するための有望なソリューションを提供する。
本研究では、畳み込みニューラルネットワーク(CNN)と包括的データ処理技術を用いて、これらの問題を解決するための新しいキュレートデータセットとディープラーニングベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-10T21:49:30Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - Multi Visual Modality Fall Detection Dataset [4.00152916049695]
転倒は、世界中の高齢者の怪我による死亡の主な原因の1つだ。
効果的なフォールの検出は、合併症や怪我のリスクを減らすことができる。
しかし、通常のRGBカメラは照明条件やプライバシーの懸念によって影響を受ける。
論文 参考訳(メタデータ) (2022-06-25T21:54:26Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
2つの空中画像が与えられた場合、セマンティックチェンジ検出は、土地被覆のバリエーションを特定し、それらの変化タイプをピクセルワイド境界で識別することを目的としている。
この問題は、正確な都市計画や天然資源管理など、多くの地球ビジョンに関連するタスクにおいて不可欠である。
本研究では, 広く異なる構造を持つモジュールから得られた特徴対を用いて意味変化を同定し, 同定するための非対称システマネットワーク(ASN)を提案する。
論文 参考訳(メタデータ) (2020-10-12T13:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。