論文の概要: Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model
- arxiv url: http://arxiv.org/abs/2406.08020v2
- Date: Mon, 20 Jan 2025 07:50:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:16:44.720758
- Title: Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model
- Title(参考訳): ビジョンファウンデーションモデルによる変更検出による総合的防災評価
- Authors: Kyeongjin Ahn, Sungwon Han, Sungwon Park, Jihee Kim, Sangyoon Park, Meeyoung Cha,
- Abstract要約: DAVI(Disaster Assessment with Vision foundation model)は,ドメインの格差に対処し,ターゲット領域に接地トラストラベルを必要とせずに建物レベルで構造的損傷を検出する手法である。
DAVIは、ソース領域で訓練されたモデルからのタスク固有の知識と、イメージセグメンテーションモデルからのタスク非依存の知識を組み合わせて、ターゲット領域の潜在的な損傷を示す擬似ラベルを生成する。
次に、2段階の精錬プロセスを使用し、ピクセルレベルと画像レベルの両方で動作し、災害被害地域の変化を正確に識別する。
- 参考スコア(独自算出の注目度): 17.016411785224317
- License:
- Abstract: The increasing frequency and intensity of natural disasters call for rapid and accurate damage assessment. In response, disaster benchmark datasets from high-resolution satellite imagery have been constructed to develop methods for detecting damaged areas. However, these methods face significant challenges when applied to previously unseen regions due to the limited geographical and disaster-type diversity in the existing datasets. We introduce DAVI (Disaster Assessment with VIsion foundation model), a novel approach that addresses domain disparities and detects structural damage at the building level without requiring ground-truth labels for target regions. DAVI combines task-specific knowledge from a model trained on source regions with task-agnostic knowledge from an image segmentation model to generate pseudo labels indicating potential damage in target regions. It then utilizes a two-stage refinement process, which operate at both pixel and image levels, to accurately identify changes in disaster-affected areas. Our evaluation, including a case study on the 2023 T\"urkiye earthquake, demonstrates that our model achieves exceptional performance across diverse terrains (e.g., North America, Asia, and the Middle East) and disaster types (e.g., wildfires, hurricanes, and tsunamis). This confirms its robustness in disaster assessment without dependence on ground-truth labels and highlights its practical applicability.
- Abstract(参考訳): 自然災害の頻度と強度の増大は、迅速かつ正確な被害評価を呼び起こす。
これに対し、高解像度衛星画像からの災害ベンチマークデータセットを構築し、損傷箇所の検出方法を開発した。
しかし、これらの手法は、既存のデータセットの地理的および災害タイプに制限があるため、これまで見られなかった領域に適用した場合、重大な課題に直面している。
DAVI (Disaster Assessment with Vision foundation model) は,ドメインの格差に対処し,対象領域に接地トラストラベルを必要とせずに建物レベルで構造的損傷を検出する手法である。
DAVIは、ソース領域で訓練されたモデルからのタスク固有の知識と、イメージセグメンテーションモデルからのタスク非依存の知識を組み合わせて、ターゲット領域の潜在的な損傷を示す擬似ラベルを生成する。
次に、2段階の精錬プロセスを使用し、ピクセルレベルと画像レベルの両方で動作し、災害被害地域の変化を正確に識別する。
2023年のトゥルキー地震のケーススタディを含め、我々のモデルは、様々な地形(例えば、北アメリカ、アジア、中東)と災害タイプ(例えば、山火事、ハリケーン、津波)で例外的な性能を発揮することを示した。
このことは、地道ラベルに依存しない災害評価の堅牢性を確認し、その実用性を強調している。
関連論文リスト
- Cross-View Geolocalization and Disaster Mapping with Street-View and VHR Satellite Imagery: A Case Study of Hurricane IAN [9.128051274958356]
本研究では,地すべりと損傷知覚推定を同時に行う新しい災害対応フレームワーク,CVDisasterを提案する。
CVDisasterは2つのクロスビューモデルから構成されており、CVDisaster-Geolocはクロスビューなジオローカライゼーションモデルを指す。
CVDisasterは, 微調整を限定して高い競争性能(局地化80%以上, 損傷知覚推定75%以上)を達成できることを示す。
論文 参考訳(メタデータ) (2024-08-13T09:37:26Z) - Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data [66.49494950674402]
航空画像からの損傷評価のタスクのための大規模合成監視を作成する際に,新たなテキスト・画像生成モデルを活用する。
低リソース領域から何千ものポストディスアスター画像を生成するために、効率的でスケーラブルなパイプラインを構築しています。
我々は,xBDおよびSKAI画像のクロスジオグラフィー領域転送設定におけるフレームワークの強度を,単一ソースとマルチソースの両方で検証する。
論文 参考訳(メタデータ) (2024-05-22T16:07:05Z) - AB2CD: AI for Building Climate Damage Classification and Detection [0.0]
本研究では, 自然災害の文脈において, 建物の損傷評価を正確に行うための深層学習手法の実装について検討する。
我々は,低品質・騒音ラベルの影響を考慮しつつ,新たな災害・地域への一般化の課題に取り組む。
我々の研究結果は、気候変動によって引き起こされる極端気象事象の影響評価を強化するための高度なAIソリューションの可能性と限界を示している。
論文 参考訳(メタデータ) (2023-09-03T03:37:04Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
実世界の点雲からの多層建築物の損傷を自動的に評価する新しい手法を提案する。
我々は、仮想レーザースキャン(VLS)データに基づいて訓練された機械学習モデルを使用する。
このモデルでは、高いマルチターゲット分類精度(全精度:92.0% - 95.1%)が得られる。
論文 参考訳(メタデータ) (2023-02-24T12:04:46Z) - Transformer-based Flood Scene Segmentation for Developing Countries [1.7499351967216341]
洪水は大規模な自然災害であり、しばしば大量の死者、大規模な材料被害、経済的混乱を引き起こす。
早期警戒システム(EWS)は洪水を予測するための水位やその他の要因を常に評価し、被害を最小限に抑える。
FloodTransformerは、災害現場の空中画像から浸水した領域を検出し、セグメンテーションする最初のビジュアルトランスフォーマーベースのモデルである。
論文 参考訳(メタデータ) (2022-10-09T10:29:41Z) - Cross-Geography Generalization of Machine Learning Methods for
Classification of Flooded Regions in Aerial Images [3.9921541182631253]
本研究は,UAV空中画像中の浸水領域を特定するための2つのアプローチを提案する。
最初のアプローチは、テクスチャベースの教師なしセグメンテーションを使用して、浸水した地域を検出する。
2つ目は、テクスチャ機能に人工ニューラルネットワークを使用して、画像が浸水して浮かばないものとして分類する。
論文 参考訳(メタデータ) (2022-10-04T13:11:44Z) - Attention Based Semantic Segmentation on UAV Dataset for Natural
Disaster Damage Assessment [0.7614628596146599]
我々は,高解像度UAVデータセット上に,自己アテンションに基づくセマンティックセマンティックセマンティクスモデルを実装した。
その結果、人命を救うとともに経済損失を減らす自然災害被害評価に自己注意型スキームを使うことが示唆された。
論文 参考訳(メタデータ) (2021-05-30T13:39:03Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
我々は,現在および将来の沿岸洪水の衛星画像を生成する深層学習パイプラインを構築した。
物理に基づく洪水図と比較して画像を評価することにより,提案手法は物理的一貫性とフォトリアリズムの両方において,ベースラインモデルよりも優れていることがわかった。
この研究は沿岸の洪水の可視化に焦点が当てられているが、気候変動が地球をどう形作るかのグローバルな可視化を作成することを想定している。
論文 参考訳(メタデータ) (2020-10-16T02:15:34Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
本研究では, ハリケーン, 洪水, 火災などの自然災害後の建物被害を効率的に評価する課題について検討する。
最初のコントリビューションは、ソーシャルメディアからユーザ生成された空中ビデオと、インスタンスレベルのビルディング損傷マスクのアノテーションで構成される、新しいデータセットである。
第二のコントリビューションはMSNetと呼ばれる新しいモデルで、新しい領域の提案ネットワーク設計を含んでいる。
論文 参考訳(メタデータ) (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。