論文の概要: Review on Determining the Number of Communities in Network Data
- arxiv url: http://arxiv.org/abs/2503.00352v1
- Date: Sat, 01 Mar 2025 05:01:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:17:10.788942
- Title: Review on Determining the Number of Communities in Network Data
- Title(参考訳): ネットワークデータにおけるコミュニティ数決定に関するレビュー
- Authors: Zhengyuan Du, Jason Cui,
- Abstract要約: 本稿では,ネットワークモデルにおける仮説検証とクラスタリングの統計的手法について述べる。
The SCORE method by Jin et al. and the NCV method by Chen et al. were evaluation for their effective in clustering in Degree-Corrected Block Models。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper reviews statistical methods for hypothesis testing and clustering in network models. We analyze the method by Bickel et al. (2016) for deriving the asymptotic null distribution of the largest eigenvalue, noting its slow convergence and the need for bootstrap corrections. The SCORE method by Jin et al. (2015) and the NCV method by Chen et al. (2018) are evaluated for their efficacy in clustering within Degree-Corrected Block Models, with NCV facing challenges due to its time-intensive nature. We suggest exploring eigenvector entry distributions as a potential efficiency improvement.
- Abstract(参考訳): 本稿では,ネットワークモデルにおける仮説検証とクラスタリングの統計的手法について述べる。
Bickel et al (2016) による, 最大固有値の漸近零分布の導出手法の解析を行い, その収束が遅いこと, ブートストラップ補正の必要性を指摘した。
The SCORE method by Jin et al (2015) and the NCV method by Chen et al (2018) were evaluation for their effective in clustering in Degree-Corrected Block Models, with NCV facing upon the time-intensive nature。
固有ベクトルのエントリー分布を効率改善の可能性として検討することを提案する。
関連論文リスト
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
フェデレートラーニング(FL)は、プライバシを維持しながらモデルをトレーニングするための分散パラダイムとして登場した。
本稿では,新たなクラスタリングFL法であるFedGWC(Federated Gaussian Weighting Clustering)を提案する。
ベンチマークデータセットを用いた実験により,FedGWCはクラスタの品質と分類精度において,既存のFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-02-05T16:33:36Z) - A Novel Pearson Correlation-Based Merging Algorithm for Robust Distributed Machine Learning with Heterogeneous Data [0.0]
本稿では,局所的な更新の質を改善し,グローバルモデルのロバスト性を高めるための新しい手法を提案する。
提案アルゴリズムは,グローバルモデルの精度を維持しながら,局所ノード数を削減する。
シミュレーション学習シナリオにおけるMNISTデータセットの実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2025-01-19T16:59:07Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - K-means Clustering Based Feature Consistency Alignment for Label-free
Model Evaluation [12.295565506212844]
本稿では,CVPR 2023における第1回DataCV Challenge of the Visual Understandingデータセットワークショップのソリューションについて述べる。
まず,K-means Clustering Based Feature Consistency Alignment (KCFCA) という手法を提案する。
第2に,分布の変化とモデル精度の関係を捉える動的回帰モデルを開発する。
第三に、外乱モデル因子を発見し、外乱モデルを排除するアルゴリズムを設計し、複数のオートエスバルモデルの強みを組み合わせる。
論文 参考訳(メタデータ) (2023-04-17T06:33:30Z) - CEREAL: Few-Sample Clustering Evaluation [4.569028973407756]
限られたラベルでクラスタリング品質を推定する未解決の問題に焦点をあてる。
本稿では,少数のクラスタリング評価のための総合的なフレームワークCEREALを紹介する。
その結果,CEREALはサンプリング基準値と比較して絶対誤差曲線下での面積を最大57%削減できることがわかった。
論文 参考訳(メタデータ) (2022-09-30T19:52:41Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Model Rectification via Unknown Unknowns Extraction from Deployment
Samples [8.0497115494227]
本稿では, 訓練後のモデル修正を, 教師付き方式で実施することを目的とした, 汎用的なアルゴリズムフレームワークを提案する。
RTSCVは未知の未知(u.u.s)を抽出する
RTSCVは最先端のアプローチよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-02-08T11:46:19Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Deep Active Learning for Biased Datasets via Fisher Kernel
Self-Supervision [5.352699766206807]
アクティブラーニング(AL)は、データ要求型ディープニューラルネットワーク(DNN)のラベル付け作業を最小化する
自己教師型フィッシャーカーネル(FK)を用いた特徴密度マッチングのための低複雑さ手法を提案する。
本手法は,MNIST,SVHN,ImageNetの分類において,処理の1/10しか必要とせず,最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-01T03:56:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。