論文の概要: Customer Analytics using Surveillance Video
- arxiv url: http://arxiv.org/abs/2503.00452v1
- Date: Sat, 01 Mar 2025 11:26:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:27:01.380765
- Title: Customer Analytics using Surveillance Video
- Title(参考訳): 監視ビデオを用いた顧客分析
- Authors: Earnest Paul Ijjina, Aniruddha Srinivas Joshi, Goutham Kanahasabai, Keerthi Priyanka P,
- Abstract要約: 本研究は,顧客の買い物行動を分析し,購入パターンを識別する手法を提案する。
重み付きk平均アルゴリズムを用いたマルチクラスタオーバーラップk平均拡張(MCOKE)アルゴリズムの拡張版を用いて、顧客を興味のある衣服にマッピングする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The analysis of sales information, is a vital step in designing an effective marketing strategy. This work proposes a novel approach to analyse the shopping behaviour of customers to identify their purchase patterns. An extended version of the Multi-Cluster Overlapping k-Means Extension (MCOKE) algorithm with weighted k-Means algorithm is utilized to map customers to the garments of interest. The age & gender traits of the customer; the time spent and the expressions exhibited while selecting garments for purchase, are utilized to associate a customer or a group of customers to a garments they are interested in. Such study on the customer base of a retail business, may help in inferring the products of interest of their consumers, and enable them in developing effective business strategies, thus ensuring customer satisfaction, loyalty, increased sales and profits.
- Abstract(参考訳): 販売情報の分析は、効果的なマーケティング戦略を設計するための重要なステップである。
本研究は,顧客の買い物行動を分析し,購入パターンを識別する手法を提案する。
重み付きk平均アルゴリズムを用いたマルチクラスタオーバーラップk平均拡張(MCOKE)アルゴリズムの拡張版を用いて、顧客を興味のある衣服にマッピングする。
客の年齢・性別特性、購入用の衣服を選択する際に提示される時間と表現を利用して、顧客または顧客のグループを興味のある衣服に関連付ける。
小売業の顧客ベースに関するこのような研究は、消費者の利害関係の商品を推測し、効果的なビジネス戦略の展開を可能にし、顧客満足度、忠誠心、売上、利益の増大を確実にする。
関連論文リスト
- Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
本稿では,クライアントの完全参加によって達成されるパフォーマンスをエミュレートする新しいクライアント選択戦略を提案する。
1ラウンドで、クライアントサブセットとフルクライアントセット間の勾配空間推定誤差を最小化し、クライアントを選択する。
複数ラウンド選択において、類似したデータ分布を持つクライアントが選択される頻度に類似することを保証する、新しい個性制約を導入する。
論文 参考訳(メタデータ) (2024-05-22T12:27:24Z) - FilFL: Client Filtering for Optimized Client Participation in Federated Learning [71.46173076298957]
フェデレートラーニングは、クライアントがローカルデータを交換することなく、協調的にモデルをトレーニングすることを可能にする。
トレーニングプロセスに参加するクライアントは、収束率、学習効率、モデル一般化に大きな影響を与えます。
本稿では,モデル一般化を改善し,クライアント参加とトレーニングを最適化する新しい手法であるクライアントフィルタリングを提案する。
論文 参考訳(メタデータ) (2023-02-13T18:55:31Z) - Customer Profiling, Segmentation, and Sales Prediction using AI in
Direct Marketing [0.0]
本稿では,顧客プロファイルシステムを開発するためのデータマイニング前処理手法を提案する。
本研究の主な成果は、顧客プロファイルの作成と商品の販売予測である。
論文 参考訳(メタデータ) (2023-02-03T14:45:09Z) - Finding Lookalike Customers for E-Commerce Marketing [5.2300714255564795]
マーケティングキャンペーンのターゲット層を拡大するスケーラブルで効率的なシステムを提案する。
深層学習に基づく埋め込みモデルを用いて顧客を表現し、近隣の検索手法を用いて興味のある顧客を素早く見つける。
論文 参考訳(メタデータ) (2023-01-09T02:18:58Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
本稿では、チャットベースのカスタマーサポートのインタラクションにのみ依存して、個々のユーザの推薦決定を予測するフレームワークを提案する。
ケーススタディでは、ラテンアメリカの大手電子商取引会社の金融分野における16.4kのユーザ数と48.7kの顧客サポートに関する会話を分析した。
以上の結果から,CS会話のメッセージワイドな感情進化のみに基づいて,ユーザが製品やサービスを推薦する可能性を予測することが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-11-08T00:43:36Z) - Towards Revenue Maximization with Popular and Profitable Products [69.21810902381009]
企業マーケティングの共通のゴールは、様々な効果的なマーケティング戦略を活用することで、収益/利益を最大化することである。
商品の収益性に関する信頼性のある情報を見つけることは、ほとんどの製品が一定の時期にピークを迎える傾向があるため困難である。
本稿では、経済行動に基づく収益問題に対処し、ターゲットマーケティングのための0n-shelf Popular and most Profitable Products(OPPPs)を実行するための一般的な利益志向の枠組みを提案する。
論文 参考訳(メタデータ) (2022-02-26T02:07:25Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
本研究は,小売分析と統計学習のアイデアを疎結合に組み合わせ,買い物客のオンラインギフトストアへの買い物嗜好を学習する方法を報告する。
論文 参考訳(メタデータ) (2021-11-11T05:36:39Z) - OPAM: Online Purchasing-behavior Analysis using Machine learning [0.8121462458089141]
本稿では,教師なし・教師なし・半教師付き学習手法を用いた顧客の購買行動分析システムを提案する。
提案システムは,顧客カテゴリやクラスタを特定するために,セッションおよびユーザジャーニーレベルの購買行動を分析する。
論文 参考訳(メタデータ) (2021-02-02T17:29:52Z) - Dynamically Tie the Right Offer to the Right Customer in
Telecommunications Industry [0.0]
本研究は,顧客ターゲットのキャンペーン依存変数に着目した概念モデルを提案する。
この研究の顧客セグメンテーションの結果は、マーケターにとってより意味があり、関連性があるかもしれない。
論文 参考訳(メタデータ) (2020-10-18T16:44:51Z) - Face to Purchase: Predicting Consumer Choices with Structured Facial and
Behavioral Traits Embedding [53.02059906193556]
消費者の顔の特徴と履歴に基づいて消費者の購入を予測することを提案する。
階層型埋め込みネットワークに基づく半教師付きモデルを設計し、消費者の高レベルな特徴を抽出する。
実世界のデータセットを用いた実験結果から,消費者の購買行動を予測するために,顔情報の導入による肯定的な効果が示された。
論文 参考訳(メタデータ) (2020-07-14T06:06:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。