論文の概要: Personalized Federated Knowledge Graph Embedding with Client-Wise Relation Graph
- arxiv url: http://arxiv.org/abs/2406.11943v1
- Date: Mon, 17 Jun 2024 17:44:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 00:36:26.324554
- Title: Personalized Federated Knowledge Graph Embedding with Client-Wise Relation Graph
- Title(参考訳): クライアント-ワイズ関係グラフを用いた個人化フェデレーション知識グラフ
- Authors: Xiaoxiong Zhang, Zhiwei Zeng, Xin Zhou, Dusit Niyato, Zhiqi Shen,
- Abstract要約: クライアント関係グラフを用いた個人化フェデレーション知識グラフを提案する。
PFedEGは、近隣のクライアントから埋め込まれたエンティティを集約することで、各クライアントに対してパーソナライズされた補完知識を学習する。
我々は4つのベンチマークデータセットの広範な実験を行い、その手法を最先端モデルに対して評価する。
- 参考スコア(独自算出の注目度): 49.66272783945571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Knowledge Graph Embedding (FKGE) has recently garnered considerable interest due to its capacity to extract expressive representations from distributed knowledge graphs, while concurrently safeguarding the privacy of individual clients. Existing FKGE methods typically harness the arithmetic mean of entity embeddings from all clients as the global supplementary knowledge, and learn a replica of global consensus entities embeddings for each client. However, these methods usually neglect the inherent semantic disparities among distinct clients. This oversight not only results in the globally shared complementary knowledge being inundated with too much noise when tailored to a specific client, but also instigates a discrepancy between local and global optimization objectives. Consequently, the quality of the learned embeddings is compromised. To address this, we propose Personalized Federated knowledge graph Embedding with client-wise relation Graph (PFedEG), a novel approach that employs a client-wise relation graph to learn personalized embeddings by discerning the semantic relevance of embeddings from other clients. Specifically, PFedEG learns personalized supplementary knowledge for each client by amalgamating entity embedding from its neighboring clients based on their "affinity" on the client-wise relation graph. Each client then conducts personalized embedding learning based on its local triples and personalized supplementary knowledge. We conduct extensive experiments on four benchmark datasets to evaluate our method against state-of-the-art models and results demonstrate the superiority of our method.
- Abstract(参考訳): Federated Knowledge Graph Embedding (FKGE)は、分散知識グラフから表現表現を抽出する能力と、個々のクライアントのプライバシを同時に保護する能力によって、最近かなりの関心を集めている。
既存のFKGEメソッドは通常、すべてのクライアントからのエンティティ埋め込みの算術平均をグローバル補完知識として利用し、各クライアントに対するグローバルコンセンサスエンティティ埋め込みのレプリカを学ぶ。
しかしながら、これらの手法は通常、異なるクライアント間の固有の意味的相違を無視する。
この監視によって、グローバルに共有される補完的な知識が、特定のクライアントに合わせるとノイズが多すぎるだけでなく、局所的な最適化目標とグローバルな最適化目標の相違も生じます。
これにより、学習した埋め込みの品質が損なわれる。
これを解決するために,PFedEG(Personalized Federated Knowledge Graph Embedding with client-wise relation Graph)を提案する。
具体的には、PFedEGは、クライアントワイド関係グラフ上の「親和性」に基づいて、近隣のクライアントからエンティティを埋め込むことで、各クライアントに対してパーソナライズされた補足的知識を学習する。
それぞれのクライアントは、ローカルのトリプルとパーソナライズされた補足的知識に基づいて、パーソナライズされた埋め込み学習を行う。
我々は,4つのベンチマークデータセットを用いて,最先端モデルに対する提案手法の評価を行い,本手法の優位性を実証した。
関連論文リスト
- Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Personalized Federated Learning via Amortized Bayesian Meta-Learning [21.126405589760367]
我々は,Amortized Bayesian Meta-Learningを通じて,パーソナライズド・フェデレーション・ラーニングの新しい視点を紹介する。
具体的には,クライアント間の階層的変動推論を用いたemphFedABMLという新しいアルゴリズムを提案する。
我々の理論解析は平均一般化誤差の上限を提供し、未知のデータに対する一般化性能を保証する。
論文 参考訳(メタデータ) (2023-07-05T11:58:58Z) - Re-Weighted Softmax Cross-Entropy to Control Forgetting in Federated
Learning [14.196701066823499]
フェデレートラーニング(Federated Learning)では、独立したクライアントノードの集合で計算されたモデル更新を集約することによって、グローバルモデルが学習される。
我々は、個々のクライアントモデルが、他のクライアントのデータに関して破滅的な忘れを経験していることを示します。
本稿では,損失の計算に先立ってソフトマックスのロジットを再重み付けすることで,クロスエントロピーの目標を周期的に修正する効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T14:51:55Z) - PaDPaF: Partial Disentanglement with Partially-Federated GANs [5.195669033269619]
フェデレーテッド・ラーニングは、多くの潜在的な現実のアプリケーションで人気のある機械学習パラダイムとなっている。
本研究では,グローバルクライアント非依存とローカルクライアント固有の生成モデルを組み合わせた新しいアーキテクチャを提案する。
提案モデルでは,グローバルな一貫した表現を暗黙的に切り離すことで,プライバシーとパーソナライゼーションを実現する。
論文 参考訳(メタデータ) (2022-12-07T18:28:54Z) - PGFed: Personalize Each Client's Global Objective for Federated Learning [7.810284483002312]
本稿では,各クライアントが自身のグローバルな目的をパーソナライズ可能な,パーソナライズされたFLフレームワークを提案する。
大規模な(O(N2))通信オーバーヘッドと潜在的なプライバシリークを回避するため、各クライアントのリスクは、他のクライアントの適応的リスクアグリゲーションの1次近似によって推定される。
異なるフェデレーション条件下での4つのデータセットに対する実験により,従来の最先端手法よりも一貫したPGFの改良が示された。
論文 参考訳(メタデータ) (2022-12-02T21:16:39Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Personalized Federated Learning through Local Memorization [10.925242558525683]
フェデレーション学習により、クライアントはデータをローカルに保ちながら、統計的モデルを協調的に学習することができる。
最近のパーソナライズされた学習方法は、他のクライアントで利用可能な知識を活用しながら、各クライアントに対して別々のモデルを訓練する。
本稿では,この手法が最先端手法よりも精度と公平性を著しく向上することを示す。
論文 参考訳(メタデータ) (2021-11-17T19:40:07Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
そこで我々は,各クライアントが他のクライアントと連携して,クライアント固有の目的ごとのより強力なモデルを得る,フェデレーション学習の代替案を提案する。
基礎となるデータ分布やクライアントの類似性に関する知識を前提とせず、各クライアントが関心のある任意のターゲット分布を最適化できるようにします。
この手法は既存の代替品を上回り、ローカルデータ配信以外の転送のようなパーソナライズされたFLの新機能を可能にする。
論文 参考訳(メタデータ) (2020-12-15T19:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。