論文の概要: LLMDR: LLM-Driven Deadlock Detection and Resolution in Multi-Agent Pathfinding
- arxiv url: http://arxiv.org/abs/2503.00717v1
- Date: Sun, 02 Mar 2025 03:49:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:06.545994
- Title: LLMDR: LLM-Driven Deadlock Detection and Resolution in Multi-Agent Pathfinding
- Title(参考訳): LLMDR:マルチエージェントパスフィニングにおけるLCM駆動デッドロック検出と分解能
- Authors: Seungbae Seo, Junghwan Kim, Minjeong Shin, Bongwon Suh,
- Abstract要約: LLMDR (LLM-Driven Deadlock Detection and Resolution) はデッドロックの解決と学習MAPFモデルの性能向上を目的とした手法である。
LLMDRは、大規模言語モデルの推論機能と学習済みMAPFモデルと優先順位付け計画を統合し、デッドロックを検出し、カスタマイズされた解決戦略を提供する。
以上の結果から,LLMDRは学習済みMAPFモデル,特にデッドロック発生シナリオの性能を向上し,成功率も顕著に向上した。
- 参考スコア(独自算出の注目度): 6.895637499163198
- License:
- Abstract: Multi-Agent Pathfinding (MAPF) is a core challenge in multi-agent systems. Existing learning-based MAPF methods often struggle with scalability, particularly when addressing complex scenarios that are prone to deadlocks. To address these challenges, we introduce LLMDR (LLM-Driven Deadlock Detection and Resolution), an approach designed to resolve deadlocks and improve the performance of learnt MAPF models. LLMDR integrates the inference capabilities of large language models (LLMs) with learnt MAPF models and prioritized planning, enabling it to detect deadlocks and provide customized resolution strategies. We evaluate LLMDR on standard MAPF benchmark maps with varying agent numbers, measuring its performance when combined with several base models. The results demonstrate that LLMDR improves the performance of learnt MAPF models, particularly in deadlock-prone scenarios, with notable improvements in success rates. These findings show the potential of integrating LLMs to improve the scalability of learning-based MAPF methods. The source code for LLMDR is available at: https://github.com/ssbacc/llmdr-dhc
- Abstract(参考訳): マルチエージェントパスフィンディング(MAPF)はマルチエージェントシステムにおける中核的な課題である。
既存の学習ベースのMAPFメソッドはスケーラビリティに苦慮することが多い。
これらの課題に対処するため,LLMDR (LLM-Driven Deadlock Detection and Resolution) を導入する。
LLMDRは、大規模言語モデル(LLM)の推論機能と学習済みMAPFモデルと優先順位付け計画を統合し、デッドロックを検出し、カスタマイズされた解決戦略を提供する。
異なるエージェント数を持つ標準MAPFベンチマークマップ上でLLMDRを評価し,その性能を複数のベースモデルと組み合わせて評価した。
以上の結果から,LLMDRは学習済みMAPFモデル,特にデッドロック発生シナリオの性能を向上し,成功率も顕著に向上した。
これらの結果から,学習ベースMAPF法のスケーラビリティを向上させるため,LLMを統合する可能性が示唆された。
LLMDRのソースコードは、https://github.com/ssbacc/llmdr-dhc.comで入手できる。
関連論文リスト
- Multi-Objective Large Language Model Unlearning [3.372396620898397]
グラディエント・アセント(GA)は、対象データ上のモデルの予測確率を減少させるプロアクティブな方法である。
本稿では,多目的大規模言語モデル学習(MOLLM)アルゴリズムを提案する。
実験の結果,MLLM が SOTA GA をベースとした LLM アンラーニング法よりも非ラーニング効果とモデルユーティリティ保存の点で優れていたことが確認された。
論文 参考訳(メタデータ) (2024-12-29T09:35:56Z) - AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning [19.68349294206012]
マルチモーダルLLMのための学習自由適応推論法を提案する。
最小限の設計により,本手法はビデオと画像の両方に応用できる。
同様の計算コストで,本手法は長いビデオ理解において最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2024-12-04T11:47:57Z) - SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
投機的復号法(SD)は,大規模言語モデル(LLM)の推論を高速化するパラダイムとして広く用いられている。
本稿では,LLMの中間層を適応的に選択して推論時にスキップする,オンザフライの自己投機的復号アルゴリズムであるSWIFTを紹介する。
SWIFTは生成したテキストの元の分布を保ちながら1.3x-1.6xの高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-09T14:15:30Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
本研究では,文埋め込み性能の向上を目的としたテキスト内学習手法を提案する。
提案手法では,従来のプロンプトに基づく表現手法を自己回帰モデルに適用する。
モデルサイズをスケールすることで、数千億以上のパラメータへのスケーリングが意味的なテキスト類似性タスクのパフォーマンスを損なうことが分かる。
論文 参考訳(メタデータ) (2023-07-31T13:26:03Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。