論文の概要: Dynamic Gradient Sparsification Training for Few-Shot Fine-tuning of CT Lymph Node Segmentation Foundation Model
- arxiv url: http://arxiv.org/abs/2503.00748v1
- Date: Sun, 02 Mar 2025 06:02:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:18:55.239884
- Title: Dynamic Gradient Sparsification Training for Few-Shot Fine-tuning of CT Lymph Node Segmentation Foundation Model
- Title(参考訳): CTリンパ節郭清基礎モデルのFew-Shotファインチューニングのための動的グラディエントスペーシフィケーショントレーニング
- Authors: Zihao Luo, Zijun Gao, Wenjun Liao, Shichuan Zhang, Guotai Wang, Xiangde Luo,
- Abstract要約: リンパ節セグメンテーション(LN)は放射線治療や予後解析において重要であるが、大きな注釈付きデータセットの必要性によって制限されている。
本研究では,3,346個の頭頸部CTスキャンから36,106個の可視性LNを注釈し,ロバストなLNセグメンテーションモデル(nnUNetv2)を構築した。
我々は,LNセグメンテーションモデルの最も重要なパラメータをほとんどアノテーションで動的に更新しながら,基礎知識を保った数発の微調整手法である動的グラディエントスパシフィケーショントレーニング(DGST)を提案する。
- 参考スコア(独自算出の注目度): 9.229857825454365
- License:
- Abstract: Accurate lymph node (LN) segmentation is critical in radiotherapy treatment and prognosis analysis, but is limited by the need for large annotated datasets. While deep learning-based segmentation foundation models show potential in developing high-performing models with fewer samples, their medical adaptation faces LN domain-specific prior deficiencies and inefficient few-shot fine-tuning for complex clinical practices, highlighting the necessity of an LN segmentation foundation model. In this work, we annotated 36,106 visible LNs from 3,346 publicly available head-and-neck CT scans to establish a robust LN segmentation model (nnUNetv2). Building on this, we propose Dynamic Gradient Sparsification Training (DGST), a few-shot fine-tuning approach that preserves foundational knowledge while dynamically updating the most critical parameters of the LN segmentation model with few annotations. We validate it on two publicly available LN segmentation datasets: SegRap2023 and LNQ2023. The results show that DGST outperforms existing few-shot fine-tuning methods, achieving satisfactory performance with limited labeled data. We release the dataset, models and all implementations to facilitate relevant research: https://github.com/Zihaoluoh/LN-Seg-FM.
- Abstract(参考訳): 放射線治療や予後解析において, 正確なリンパ節郭清は重要であるが, 大規模な注記データセットの必要性により制限されている。
深層学習に基づくセグメンテーション基礎モデルは、より少ないサンプルで高性能なモデルを開発する可能性を示しているが、その医療適応は、LNドメイン固有の事前欠陥と、複雑な臨床実践のための非効率な数ショットの微調整に直面しており、LNセグメンテーション基礎モデルの必要性を強調している。
本研究では3,346個の頭頸部CTスキャンから36,106個のLNを注釈し,堅牢なLNセグメンテーションモデル(nnUNetv2)を構築した。
そこで我々は,LNセグメンテーションモデルの最も重要なパラメータをほとんどアノテーションで動的に更新しながら,基礎的知識を保った数発の微調整手法であるDGST(Dynamic Gradient Sparsification Training)を提案する。
公開されている2つのLNセグメンテーションデータセット(SegRap2023とLNQ2023)で検証する。
その結果、DGSTは、ラベル付きデータに制限された精度で、既存の数発の微調整法よりも優れていた。
関連する研究を促進するために、データセット、モデル、およびすべての実装をリリースします。
関連論文リスト
- Low-Rank Continual Pyramid Vision Transformer: Incrementally Segment Whole-Body Organs in CT with Light-Weighted Adaptation [10.746776960260297]
軽量低ランク適応 (LoRA) を用いた新しい連続体器官分割モデルを提案する。
まず、最初のタスクでピラミッドビジョントランスフォーマー(PVT)ベースセグメンテーションモデルをトレーニングし、その後、新しい学習タスク毎に凍結モデルに軽量でトレーニング可能なLoRAパラメータを継続的に追加する。
提案モデルでは, 破滅的忘れを伴わず, 低パラメータ増加率を維持しながら, 新しい臓器を連続的に分割する。
論文 参考訳(メタデータ) (2024-10-07T02:00:13Z) - Leveraging Task-Specific Knowledge from LLM for Semi-Supervised 3D Medical Image Segmentation [9.778201925906913]
LLM-SegNetは大規模言語モデル(LLM)を利用してタスク固有の知識を協調学習フレームワークに統合する。
一般公開されているLeft Atrium、Pancreas-CT、Brats-19データセットの実験は、最先端技術と比較してLLM-SegNetの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-07-06T14:23:16Z) - Few-Shot Learning for Annotation-Efficient Nucleus Instance Segmentation [50.407071700154674]
少数ショット学習(FSL)の観点から、アノテーション効率の良い核インスタンスセグメンテーションを定式化することを提案する。
我々の研究は、計算病理学の隆盛とともに、多くの完全注釈付きデータセットが一般に公開されていることに動機づけられた。
いくつかの公開データセットに対する大規模な実験は、SGFSISが他のアノテーション効率のよい学習ベースラインより優れていることを示している。
論文 参考訳(メタデータ) (2024-02-26T03:49:18Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Uncertainty-Aware Semi-Supervised Learning for Prostate MRI Zonal
Segmentation [0.9176056742068814]
比較的少数のアノテーションしか必要としない新しい半教師付き学習(SSL)手法を提案する。
提案手法は,近年の深層学習の不確実性推定モデルを用いた擬似ラベル手法を用いる。
提案モデルは,ProstateXデータセットと外部テストセットを用いた実験において,半教師付きモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-05-10T08:50:04Z) - SegPrompt: Using Segmentation Map as a Better Prompt to Finetune Deep
Models for Kidney Stone Classification [62.403510793388705]
深層学習は、内視鏡画像を用いた腎臓結石分類のための奨励的な結果を生み出している。
注釈付きトレーニングデータの不足は、トレーニングされたモデルの性能と一般化能力を改善する上で深刻な問題を引き起こす。
本稿では,セグメンテーションマップを2つの側面から活用することにより,データ不足問題を軽減するためにSegPromptを提案する。
論文 参考訳(メタデータ) (2023-03-15T01:30:48Z) - IterMiUnet: A lightweight architecture for automatic blood vessel
segmentation [10.538564380139483]
本稿では,新しい軽量畳み込み型セグメンテーションモデルであるIterMiUnetを提案する。
MiUnetモデルのエンコーダ・デコーダ構造を組み込むことで、その非常にパラメトリズドな性質を克服する。
提案モデルは,多くの疾患の早期診断のためのツールとして活用される可能性が大きい。
論文 参考訳(メタデータ) (2022-08-02T14:33:14Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Stronger, Faster and More Explainable: A Graph Convolutional Baseline
for Skeleton-based Action Recognition [22.90127409366107]
グラフ畳み込みネットワーク(GCN)に基づく効率的だが強力なベースラインを提案する。
畳み込みニューラルネットワーク(CNN)におけるResNetアーキテクチャの成功に触発されたResGCNモジュールがGCNで導入された。
PartAttブロックは、アクションシーケンス全体の上で最も重要な身体部分を発見するために提案される。
論文 参考訳(メタデータ) (2020-10-20T02:56:58Z) - The Devil is in Classification: A Simple Framework for Long-tail Object
Detection and Instance Segmentation [93.17367076148348]
本稿では,最新のロングテールLVISデータセットを用いて,最先端の2段階のインスタンスセグメンテーションモデルMask R-CNNの性能低下について検討する。
主な原因は、オブジェクト提案の不正確な分類である。
そこで本研究では,2段階のクラスバランスサンプリング手法により,分類ヘッドバイアスをより効果的に緩和する,簡単な校正フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-23T12:49:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。