論文の概要: LLMs are everywhere: Ubiquitous Utilization of AI Models through Air Computing
- arxiv url: http://arxiv.org/abs/2503.00767v1
- Date: Sun, 02 Mar 2025 07:24:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:05.220394
- Title: LLMs are everywhere: Ubiquitous Utilization of AI Models through Air Computing
- Title(参考訳): LLMは至る所にある - エアコンピューティングによるAIモデルのユビキタス利用
- Authors: Baris Yamansavascilar, Atay Ozgovde, Cem Ersoy,
- Abstract要約: 本研究では,Large Language Models(LLM)とエアコンピューティングの相乗効果について検討する。
本稿では, LLMと空力コンピューティングの協調利用が, 危機時の成果を著しく改善することを示す災害対応事例について述べる。
- 参考スコア(独自算出の注目度): 6.185645393091031
- License:
- Abstract: We are witnessing a new era where problem-solving and cognitive tasks are being increasingly delegated to Large Language Models (LLMs) across diverse domains, ranging from code generation to holiday planning. This trend also creates a demand for the ubiquitous execution of LLM-powered applications in a wide variety of environments in which traditional terrestrial 2D networking infrastructures may prove insufficient. A promising solution in this context is to extend edge computing into a 3D setting to include aerial platforms organized in multiple layers, a paradigm we refer to as air computing, to augment local devices for running LLM and Generative AI (GenAI) applications. This approach alleviates the strain on existing infrastructure while enhancing service efficiency by offloading computational tasks to the corresponding air units such as UAVs. Furthermore, the coordinated deployment of various air units can significantly improve the Quality of Experience (QoE) by ensuring seamless, adaptive, and resilient task execution. In this study, we investigate the synergy between LLM-based applications and air computing, exploring their potential across various use cases. Additionally, we present a disaster response case study demonstrating how the collaborative utilization of LLMs and air computing can significantly improve outcomes in critical situations.
- Abstract(参考訳): 私たちは、コード生成からホリデープランニングまで、さまざまな領域にわたる大規模言語モデル(LLM)に問題解決と認知タスクが委譲されつつある新しい時代を目の当たりにしています。
この傾向はまた、従来の地上2Dネットワークのインフラが不十分である様々な環境において、LLMを使用したアプリケーションのユビキタスな実行の需要も生んでいる。
このコンテキストにおける有望な解決策は、エッジコンピューティングを3D環境に拡張して、複数の層に組織された空中プラットフォームを含むことであり、これは私たちがエアコンピューティングと呼ぶパラダイムであり、LLMおよびGenerative AI(GenAI)アプリケーションを実行するためのローカルデバイスを拡張することである。
このアプローチは、UAVなどの対応するエアユニットに計算タスクをオフロードすることで、既存のインフラの歪みを軽減するとともに、サービスの効率を向上させる。
さらに、様々なエアユニットの協調配置により、シームレスで適応的でレジリエントなタスク実行を確実にすることで、QoE(Quality of Experience)を大幅に改善することができる。
本研究では, LLMベースのアプリケーションとエアコンピューティングの相乗効果について検討し, 様々なユースケースにおいてその可能性を探究する。
さらに,LLMとエアコンピューティングの協調利用が,危機時の成果を著しく改善することを示す災害対応事例を提示する。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Large Language Models for UAVs: Current State and Pathways to the Future [6.85423435360359]
無人航空機(UAV)は様々な分野にまたがるトランスフォーメーション技術として登場した。
この研究は、自律システムの開発を促進するために、UAVとLarge Language Models(LLM)を統合する大きな可能性を探求する。
論文 参考訳(メタデータ) (2024-05-02T21:30:10Z) - An LLM-Based Digital Twin for Optimizing Human-in-the Loop Systems [13.388869442538399]
本稿では,ショッピングモールにおける多様な集団の行動と熱的嗜好を模倣するために,大規模言語モデル(LLM)を用いたケーススタディを提案する。
集約された熱嗜好は、エージェント・イン・ザ・ループに基づく強化学習アルゴリズムであるAitL-RLに統合される。
以上の結果から,LLMは大規模オープンスペース内での複雑な人口移動をシミュレートできることがわかった。
論文 参考訳(メタデータ) (2024-03-25T14:32:28Z) - Multi-Objective Optimization Using Adaptive Distributed Reinforcement Learning [8.471466670802815]
本稿では,多目的・マルチエージェント強化学習(MARL)アルゴリズムを提案する。
我々はエッジクラウドコンピューティングを用いたITS環境でアルゴリズムをテストする。
また,本アルゴリズムは,モジュール化および非同期オンライントレーニング手法により,様々な実用上の問題にも対処する。
論文 参考訳(メタデータ) (2024-03-13T18:05:16Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
生成型大規模言語モデル(LLM)が最前線に立ち、データとのインタラクション方法に革命をもたらします。
しかし、これらのモデルをデプロイする際の計算強度とメモリ消費は、効率性の観点から大きな課題を呈している。
本研究は,機械学習システム(MLSys)研究の観点から,効率的なLCM提供手法の必要性について考察する。
論文 参考訳(メタデータ) (2023-12-23T11:57:53Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
効果的な分散機械学習フレームワークとして、フェデレートラーニング(FL)が登場します。
本稿では,ネットワーク設計と資源オーケストレーションの両面から,スケーラブルな無線FLを実現する上での課題と解決策について論じる。
論文 参考訳(メタデータ) (2023-10-08T08:55:03Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。