論文の概要: CARIL: Confidence-Aware Regression in Imitation Learning for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2503.00783v1
- Date: Sun, 02 Mar 2025 08:19:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:21:10.271903
- Title: CARIL: Confidence-Aware Regression in Imitation Learning for Autonomous Driving
- Title(参考訳): CARIL: 自律運転のための模倣学習における信頼を意識した回帰
- Authors: Elahe Delavari, Aws Khalil, Jaerock Kwon,
- Abstract要約: エンドツーエンドの視覚に基づく模倣学習は、自動運転の有望な結果を証明している。
従来のアプローチでは、正確な制御を提供するレグレッションベースモデルと、信頼性スコアを提供するが、離散化による精度の低下に悩まされる分類ベースモデルのいずれかに依存している。
我々は、回帰と分類の両ヘッドを統合したデュアルヘッドニューラルネットワークアーキテクチャを導入し、模倣学習における決定信頼性を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: End-to-end vision-based imitation learning has demonstrated promising results in autonomous driving by learning control commands directly from expert demonstrations. However, traditional approaches rely on either regressionbased models, which provide precise control but lack confidence estimation, or classification-based models, which offer confidence scores but suffer from reduced precision due to discretization. This limitation makes it challenging to quantify the reliability of predicted actions and apply corrections when necessary. In this work, we introduce a dual-head neural network architecture that integrates both regression and classification heads to improve decision reliability in imitation learning. The regression head predicts continuous driving actions, while the classification head estimates confidence, enabling a correction mechanism that adjusts actions in low-confidence scenarios, enhancing driving stability. We evaluate our approach in a closed-loop setting within the CARLA simulator, demonstrating its ability to detect uncertain actions, estimate confidence, and apply real-time corrections. Experimental results show that our method reduces lane deviation and improves trajectory accuracy by up to 50%, outperforming conventional regression-only models. These findings highlight the potential of classification-guided confidence estimation in enhancing the robustness of vision-based imitation learning for autonomous driving. The source code is available at https://github.com/ElaheDlv/Confidence_Aware_IL.
- Abstract(参考訳): エンドツーエンドの視覚に基づく模倣学習は、専門家によるデモンストレーションから直接制御コマンドを学習することで、自動運転の有望な結果を実証している。
しかし、従来のアプローチは、正確な制御を提供するが、信頼性を推定しない回帰モデルと、信頼性スコアを提供するが、離散化による精度の低下に悩まされる分類ベースモデルのいずれかに依存している。
この制限により、予測されたアクションの信頼性を定量化し、必要に応じて修正を適用することは困難になる。
本研究では、回帰と分類の両ヘッドを統合したデュアルヘッドニューラルネットワークアーキテクチャを導入し、模倣学習における決定信頼性を向上させる。
回帰ヘッドは連続運転動作を予測し、分類ヘッドは信頼度を推定し、低信頼シナリオでの動作を調整する補正機構を可能とし、運転安定性を向上させる。
我々は,CARLAシミュレータ内のクローズドループ環境において,不確実な動作を検出し,信頼度を推定し,リアルタイム補正を適用する能力を示す。
実験の結果,提案手法は車線偏差を低減し,軌道精度を最大50%向上し,従来の回帰モデルよりも優れていた。
これらの知見は、自律運転における視覚に基づく模倣学習の堅牢性を高めるために、分類誘導型信頼度推定の可能性を浮き彫りにした。
ソースコードはhttps://github.com/ElaheDlv/Confidence_Aware_ILで公開されている。
関連論文リスト
- ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty Learning [26.369237406972577]
視覚中心のセマンティック占有予測は、自律運転において重要な役割を果たす。
カメラからのセマンティック占有率を予測するための信頼性を探求する研究は、まだ少ない。
本稿では,カメラによる占有ネットワークの信頼性向上を目的としたReliOccを提案する。
論文 参考訳(メタデータ) (2024-09-26T16:33:16Z) - Automatic AI controller that can drive with confidence: steering vehicle with uncertainty knowledge [3.131134048419781]
本研究は,機械学習フレームワークを用いた車両の横方向制御システムの開発に焦点をあてる。
確率論的学習モデルであるベイズニューラルネットワーク(BNN)を用いて不確実性定量化に対処する。
信頼しきい値を確立することで、手動による介入をトリガーし、安全なパラメータの外で動作した場合に、制御がアルゴリズムから解放されることを保証できます。
論文 参考訳(メタデータ) (2024-04-24T23:22:37Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
ディープラーニングにおけるミススキャリブレーションとは、予測された信頼とパフォーマンスの間には相違がある、という意味である。
トレーニング中に何を学ぶべきかを学ぶことを目的とした動的正規化(DReg)を導入し、信頼度調整のトレードオフを回避する。
論文 参考訳(メタデータ) (2024-02-13T11:25:20Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
カスケードは、推論コストをサンプル毎に適応的に変化させる古典的な戦略である。
deferralルールは、シーケンス内の次の分類子を呼び出すか、または予測を終了するかを決定する。
カスケードの構造に執着しているにもかかわらず、信頼に基づく推論は実際は極めてうまく機能することが多い。
論文 参考訳(メタデータ) (2023-07-06T04:13:57Z) - Calibrating Multimodal Learning [94.65232214643436]
本稿では,従来の手法の予測信頼性を校正するために,新たな正規化手法であるCML(Callibrating Multimodal Learning)正則化を提案する。
この技術は、既存のモデルによって柔軟に装備され、信頼性校正、分類精度、モデルロバスト性の観点から性能を向上させることができる。
論文 参考訳(メタデータ) (2023-06-02T04:29:57Z) - Is my Driver Observation Model Overconfident? Input-guided Calibration
Networks for Reliable and Interpretable Confidence Estimates [23.449073032842076]
運転観察モデルは完璧な条件下で展開されることは滅多にない。
生のニューラルネットワークベースのアプローチは、予測品質を大幅に過大評価する傾向がある。
本稿では,CARing(Callibrated Action Recognition with Input Guidance)という,ビデオ表現による信頼度向上学習のためのニューラルネットワークを活用した新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-10T12:43:58Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Uncertainty-sensitive Activity Recognition: a Reliability Benchmark and
the CARING Models [37.60817779613977]
本稿では,現代の行動認識アーキテクチャの信頼度が,正しい結果の確率を反映していることを示す最初の研究を行う。
新たなキャリブレーションネットワークを通じて、モデル出力を現実的な信頼性推定に変換する新しいアプローチを紹介します。
論文 参考訳(メタデータ) (2021-01-02T15:41:21Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Binary Classification from Positive Data with Skewed Confidence [85.18941440826309]
肯定的信頼度(Pconf)分類は、有望な弱教師付き学習法である。
実際には、信頼はアノテーションプロセスで生じるバイアスによって歪められることがある。
本稿では、スキュード信頼度のパラメータ化モデルを導入し、ハイパーパラメータを選択する方法を提案する。
論文 参考訳(メタデータ) (2020-01-29T00:04:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。