論文の概要: Automatic AI controller that can drive with confidence: steering vehicle with uncertainty knowledge
- arxiv url: http://arxiv.org/abs/2404.16893v1
- Date: Wed, 24 Apr 2024 23:22:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 15:03:56.065217
- Title: Automatic AI controller that can drive with confidence: steering vehicle with uncertainty knowledge
- Title(参考訳): 自信を持って運転できる自動AIコントローラー:不確実性のある車両を操縦する
- Authors: Neha Kumari, Sumit Kumar. Sneha Priya, Ayush Kumar, Akash Fogla,
- Abstract要約: 本研究は,機械学習フレームワークを用いた車両の横方向制御システムの開発に焦点をあてる。
確率論的学習モデルであるベイズニューラルネットワーク(BNN)を用いて不確実性定量化に対処する。
信頼しきい値を確立することで、手動による介入をトリガーし、安全なパラメータの外で動作した場合に、制御がアルゴリズムから解放されることを保証できます。
- 参考スコア(独自算出の注目度): 3.131134048419781
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In safety-critical systems that interface with the real world, the role of uncertainty in decision-making is pivotal, particularly in the context of machine learning models. For the secure functioning of Cyber-Physical Systems (CPS), it is imperative to manage such uncertainty adeptly. In this research, we focus on the development of a vehicle's lateral control system using a machine learning framework. Specifically, we employ a Bayesian Neural Network (BNN), a probabilistic learning model, to address uncertainty quantification. This capability allows us to gauge the level of confidence or uncertainty in the model's predictions. The BNN based controller is trained using simulated data gathered from the vehicle traversing a single track and subsequently tested on various other tracks. We want to share two significant results: firstly, the trained model demonstrates the ability to adapt and effectively control the vehicle on multiple similar tracks. Secondly, the quantification of prediction confidence integrated into the controller serves as an early-warning system, signaling when the algorithm lacks confidence in its predictions and is therefore susceptible to failure. By establishing a confidence threshold, we can trigger manual intervention, ensuring that control is relinquished from the algorithm when it operates outside of safe parameters.
- Abstract(参考訳): 現実世界と対話する安全クリティカルなシステムでは、意思決定における不確実性の役割が特に機械学習モデルにおいて重要である。
CPS(Cyber-Physical Systems)のセキュアな機能のためには、このような不確実性を適切に管理することが不可欠である。
本研究では,機械学習フレームワークを用いた車両の横方向制御システムの開発に焦点をあてる。
具体的には、確率論的学習モデルであるベイズニューラルネットワーク(BNN)を用いて不確実性定量化に対処する。
この能力により、モデルの予測における信頼度や不確実性のレベルを測定することができます。
BNNベースのコントローラは、単一のトラックを横断する車両から収集されたシミュレーションデータを使用して訓練され、その後、他の様々なトラックでテストされる。
まず、トレーニングされたモデルは、複数の類似したトラック上で車両を適応し、効果的に制御する能力を示します。
第二に、制御器に組み込まれた予測信頼性の定量化は早期警戒システムとして機能し、アルゴリズムが予測に対する信頼を欠き、したがって失敗に陥りやすいことを示唆する。
信頼しきい値を確立することで、手動による介入をトリガーし、安全なパラメータの外で動作した場合に、制御がアルゴリズムから解放されることを保証できます。
関連論文リスト
- Collision Probability Distribution Estimation via Temporal Difference Learning [0.46085106405479537]
累積衝突確率分布を推定する先駆的なフレームワークであるCollisionProを紹介する。
我々は、強化学習の文脈において、我々の枠組みを定式化し、安全に配慮したエージェントの道を開く。
現実的な自律運転シミュレータを用いて,本フレームワークの総合的な検討を行った。
論文 参考訳(メタデータ) (2024-07-29T13:32:42Z) - Safe Navigation in Unstructured Environments by Minimizing Uncertainty
in Control and Perception [5.46262127926284]
制御と知覚の不確実性は、非構造環境における自動運転車のナビゲーションに課題をもたらす。
本稿では,安全かつ信頼性の高いナビゲーションを実現するために,制御と認識の不確実性を最小化するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-26T11:24:03Z) - Self-Aware Trajectory Prediction for Safe Autonomous Driving [9.868681330733764]
軌道予測は、自動運転ソフトウェアスタックの重要なコンポーネントの1つである。
本稿では,自己認識軌道予測手法を提案する。
提案手法は, 自己認識, メモリフットプリント, リアルタイム性能で良好に動作した。
論文 参考訳(メタデータ) (2023-05-16T03:53:23Z) - Vehicle lateral control using Machine Learning for automated vehicle
guidance [0.0]
安全クリティカルシステムで使用される機械学習モデルにおいて、意思決定の不確実性は不可欠である。
本研究では,機械学習モデルを用いて車両の横方向制御系を設計する。
論文 参考訳(メタデータ) (2023-03-14T19:14:24Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Is my Driver Observation Model Overconfident? Input-guided Calibration
Networks for Reliable and Interpretable Confidence Estimates [23.449073032842076]
運転観察モデルは完璧な条件下で展開されることは滅多にない。
生のニューラルネットワークベースのアプローチは、予測品質を大幅に過大評価する傾向がある。
本稿では,CARing(Callibrated Action Recognition with Input Guidance)という,ビデオ表現による信頼度向上学習のためのニューラルネットワークを活用した新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-10T12:43:58Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。