Training-Free Dataset Pruning for Instance Segmentation
- URL: http://arxiv.org/abs/2503.00828v1
- Date: Sun, 02 Mar 2025 10:05:59 GMT
- Title: Training-Free Dataset Pruning for Instance Segmentation
- Authors: Yalun Dai, Lingao Xiao, Ivor W. Tsang, Yang He,
- Abstract summary: Instance segmentation presents three key challenges: pixel-level annotations, instance area variations, and class imbalances.<n>We propose a novel Training-Free dataset Pruning (TFDP) method for instance segmentation.<n>We achieve state-of-the-art results on VOC 2012, Cityscapes, and COCO datasets, generalizing well across CNN and Transformer architectures.
- Score: 35.124251909622025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing dataset pruning techniques primarily focus on classification tasks, limiting their applicability to more complex and practical tasks like instance segmentation. Instance segmentation presents three key challenges: pixel-level annotations, instance area variations, and class imbalances, which significantly complicate dataset pruning efforts. Directly adapting existing classification-based pruning methods proves ineffective due to their reliance on time-consuming model training process. To address this, we propose a novel Training-Free Dataset Pruning (TFDP) method for instance segmentation. Specifically, we leverage shape and class information from image annotations to design a Shape Complexity Score (SCS), refining it into a Scale-Invariant (SI-SCS) and Class-Balanced (CB-SCS) versions to address instance area variations and class imbalances, all without requiring model training. We achieve state-of-the-art results on VOC 2012, Cityscapes, and COCO datasets, generalizing well across CNN and Transformer architectures. Remarkably, our approach accelerates the pruning process by an average of 1349$\times$ on COCO compared to the adapted baselines. Source code is available at: https://github.com/he-y/dataset-pruning-for-instance-segmentation
Related papers
- Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - Placing Objects in Context via Inpainting for Out-of-distribution Segmentation [59.00092709848619]
Placing Objects in Context (POC) is a pipeline to realistically add objects to an image.
POC can be used to extend any dataset with an arbitrary number of objects.
We present different anomaly segmentation datasets based on POC-generated data and show that POC can improve the performance of recent state-of-the-art anomaly fine-tuning methods.
arXiv Detail & Related papers (2024-02-26T08:32:41Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
We propose a method to enable the end-to-end pre-training for image segmentation models based on classification datasets.
The proposed method leverages a weighted segmentation learning procedure to pre-train the segmentation network en masse.
Experiment results show that, with ImageNet accompanied by PSSL as the source dataset, the proposed end-to-end pre-training strategy successfully boosts the performance of various segmentation models.
arXiv Detail & Related papers (2022-07-04T13:02:32Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - Sparse Object-level Supervision for Instance Segmentation with Pixel
Embeddings [4.038011160363972]
Most state-of-the-art instance segmentation methods have to be trained on densely annotated images.
We propose a proposal-free segmentation approach based on non-spatial embeddings.
We evaluate the proposed method on challenging 2D and 3D segmentation problems in different microscopy modalities.
arXiv Detail & Related papers (2021-03-26T16:36:56Z) - Scaling Semantic Segmentation Beyond 1K Classes on a Single GPU [87.48110331544885]
We propose a novel training methodology to train and scale the existing semantic segmentation models.
We demonstrate a clear benefit of our approach on a dataset with 1284 classes, bootstrapped from LVIS and COCO annotations, with three times better mIoU than the DeeplabV3+ model.
arXiv Detail & Related papers (2020-12-14T13:12:38Z) - The Devil is in Classification: A Simple Framework for Long-tail Object
Detection and Instance Segmentation [93.17367076148348]
We investigate performance drop of the state-of-the-art two-stage instance segmentation model Mask R-CNN on the recent long-tail LVIS dataset.
We unveil that a major cause is the inaccurate classification of object proposals.
We propose a simple calibration framework to more effectively alleviate classification head bias with a bi-level class balanced sampling approach.
arXiv Detail & Related papers (2020-07-23T12:49:07Z) - SASO: Joint 3D Semantic-Instance Segmentation via Multi-scale Semantic
Association and Salient Point Clustering Optimization [8.519716460338518]
We propose a novel 3D point cloud segmentation framework named SASO, which jointly performs semantic and instance segmentation tasks.
For semantic segmentation task, inspired by the inherent correlation among objects in spatial context, we propose a Multi-scale Semantic Association (MSA) module.
For instance segmentation task, different from previous works that utilize clustering only in inference procedure, we propose a Salient Point Clustering Optimization (SPCO) module.
arXiv Detail & Related papers (2020-06-25T08:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.