NSegment : Label-specific Deformations for Remote Sensing Image Segmentation
- URL: http://arxiv.org/abs/2504.19634v6
- Date: Mon, 04 Aug 2025 06:07:13 GMT
- Title: NSegment : Label-specific Deformations for Remote Sensing Image Segmentation
- Authors: Yechan Kim, DongHo Yoon, SooYeon Kim, Moongu Jeon,
- Abstract summary: Labeling errors in remote sensing (RS) image segmentation datasets often remain implicit and subtle.<n>The scarcity of annotated RS data due to the high cost of labeling complicates training noise-robust models.<n>We propose NSegment-a simple yet effective data augmentation solution to mitigate this issue.
- Score: 10.585761836168409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Labeling errors in remote sensing (RS) image segmentation datasets often remain implicit and subtle due to ambiguous class boundaries, mixed pixels, shadows, complex terrain features, and subjective annotator bias. Furthermore, the scarcity of annotated RS data due to the high cost of labeling complicates training noise-robust models. While sophisticated mechanisms such as label selection or noise correction might address the issue mentioned above, they tend to increase training time and add implementation complexity. In this paper, we propose NSegment-a simple yet effective data augmentation solution to mitigate this issue. Unlike traditional methods, it applies elastic transformations only to segmentation labels, varying deformation intensity per sample in each training epoch to address annotation inconsistencies. Experimental results demonstrate that our approach improves the performance of RS image segmentation over various state-of-the-art models.
Related papers
- Adaptive Noise-Tolerant Network for Image Segmentation [1.57731592348751]
We study whether integrating imperfect or noisy segmentation results from off-the-shelf segmentation algorithms may help achieve better segmentation results through a new Adaptive Noise-Tolerant Network (ANTN) model.<n>We extend the noisy label deep learning to image segmentation with two novel aspects: (1) multiple noisy labels can be integrated into one deep learning model; (2) noisy segmentation modeling, including probabilistic parameters, is adaptive, depending on the given testing image appearance.
arXiv Detail & Related papers (2025-01-13T09:49:34Z) - Focusing Image Generation to Mitigate Spurious Correlations [13.225738145621843]
Instance features in images exhibit spurious correlations with background features, affecting the training process of deep neural classifiers.<n>We propose a data augmentation method called Spurious Correlations Guided Synthesis (SCGS) that mitigates spurious correlations through image generation model.
arXiv Detail & Related papers (2024-12-27T04:48:56Z) - Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely.
Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels.
Existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data.
We propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2024-08-29T13:31:15Z) - Optimizing against Infeasible Inclusions from Data for Semantic Segmentation through Morphology [58.17907376475596]
State-of-the-art semantic segmentation models are typically optimized in a data-driven fashion.<n>InSeIn extracts explicit inclusion constraints that govern spatial class relations from the semantic segmentation training set at hand.<n>It then enforces a morphological yet differentiable loss that penalizes violations of these constraints during training to promote prediction feasibility.
arXiv Detail & Related papers (2024-08-26T22:39:08Z) - Consistency Regularisation in Varying Contexts and Feature Perturbations
for Semi-Supervised Semantic Segmentation of Histology Images [14.005379068469361]
We present a consistency based semi-supervised learning (SSL) approach that can help mitigate this challenge.
SSL models might also be susceptible to changing context and features perturbations exhibiting poor generalisation due to the limited training data.
We show that cross-consistency training makes the encoder features invariant to different perturbations and improves the prediction confidence.
arXiv Detail & Related papers (2023-01-30T18:21:57Z) - Category-Adaptive Label Discovery and Noise Rejection for Multi-label
Image Recognition with Partial Positive Labels [78.88007892742438]
Training multi-label models with partial positive labels (MLR-PPL) attracts increasing attention.
Previous works regard unknown labels as negative and adopt traditional MLR algorithms.
We propose to explore semantic correlation among different images to facilitate the MLR-PPL task.
arXiv Detail & Related papers (2022-11-15T02:11:20Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN.
In particular, we formulate the annotator learning as a learning-to-learn problem.
We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images.
arXiv Detail & Related papers (2022-11-06T01:29:22Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
This paper presents a Self-supervised Low-Rank Network ( SLRNet) for single-stage weakly supervised semantic segmentation (WSSS) and semi-supervised semantic segmentation (SSSS)
SLRNet uses cross-view self-supervision, that is, it simultaneously predicts several attentive LR representations from different views of an image to learn precise pseudo-labels.
Experiments on the Pascal VOC 2012, COCO, and L2ID datasets demonstrate that our SLRNet outperforms both state-of-the-art WSSS and SSSS methods with a variety of different settings.
arXiv Detail & Related papers (2022-03-19T09:19:55Z) - Alleviating Noisy-label Effects in Image Classification via Probability
Transition Matrix [30.532481130511137]
Deep-learning-based image classification frameworks often suffer from the noisy label problem caused by the inter-observer variation.
We propose a plugin module, namely noise ignoring block (NIB), to separate the hard samples from the mislabeled ones.
Our NIB module consistently improves the performances of the state-of-the-art robust training methods.
arXiv Detail & Related papers (2021-10-17T17:01:57Z) - POPCORN: Progressive Pseudo-labeling with Consistency Regularization and
Neighboring [3.4253416336476246]
Semi-supervised learning (SSL) uses unlabeled data to compensate for the scarcity of images and the lack of method generalization to unseen domains.
We propose POPCORN, a novel method combining consistency regularization and pseudo-labeling designed for image segmentation.
arXiv Detail & Related papers (2021-09-13T23:36:36Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
We propose several strategies for learning from partially overlapping labels in the context of abdominal organ segmentation.
We find that combining a semi-supervised approach with an adaptive cross entropy loss can successfully exploit heterogeneously annotated data.
arXiv Detail & Related papers (2021-07-13T09:22:24Z) - Semi-supervised Semantic Segmentation with Directional Context-aware
Consistency [66.49995436833667]
We focus on the semi-supervised segmentation problem where only a small set of labeled data is provided with a much larger collection of totally unlabeled images.
A preferred high-level representation should capture the contextual information while not losing self-awareness.
We present the Directional Contrastive Loss (DC Loss) to accomplish the consistency in a pixel-to-pixel manner.
arXiv Detail & Related papers (2021-06-27T03:42:40Z) - Synergy Between Semantic Segmentation and Image Denoising via Alternate
Boosting [102.19116213923614]
We propose a boosting network to perform denoising and segmentation alternately.
We observe that not only denoising helps combat the drop of segmentation accuracy due to noise, but also pixel-wise semantic information boosts the capability of denoising.
Experimental results show that the denoised image quality is improved substantially and the segmentation accuracy is improved to close to that of clean images.
arXiv Detail & Related papers (2021-02-24T06:48:45Z) - A Few Guidelines for Incremental Few-Shot Segmentation [57.34237650765928]
Given a pretrained segmentation model and few images containing novel classes, our goal is to learn to segment novel classes while retaining the ability to segment previously seen ones.
We show how the main problems of end-to-end training in this scenario are.
i) the drift of the batch-normalization statistics toward novel classes that we can fix with batch renormalization and.
ii) the forgetting of old classes, that we can fix with regularization strategies.
arXiv Detail & Related papers (2020-11-30T20:45:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.