論文の概要: A Transfer Framework for Enhancing Temporal Graph Learning in Data-Scarce Settings
- arxiv url: http://arxiv.org/abs/2503.00852v2
- Date: Tue, 11 Mar 2025 05:03:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:38:40.503210
- Title: A Transfer Framework for Enhancing Temporal Graph Learning in Data-Scarce Settings
- Title(参考訳): データ・スカース・セッティングにおける時間グラフ学習の促進のためのトランスファー・フレームワーク
- Authors: Sidharth Agarwal, Tanishq Dubey, Shubham Gupta, Srikanta Bedathur,
- Abstract要約: エンティティ間の動的相互作用は、ソーシャルプラットフォーム、金融システム、ヘルスケア、電子商取引のようなドメインで一般的である。
TGNNはそのような予測タスクに対して強力な結果を得ているが、通常、現実世界のシナリオで制限される広範なトレーニングデータを必要とする。
本稿では,ノード表現を関連する特徴から2部符号化機構によって切り離す新しい転送手法を提案する。
- 参考スコア(独自算出の注目度): 30.97142882931946
- License:
- Abstract: Dynamic interactions between entities are prevalent in domains like social platforms, financial systems, healthcare, and e-commerce. These interactions can be effectively represented as time-evolving graphs, where predicting future connections is a key task in applications such as recommendation systems. Temporal Graph Neural Networks (TGNNs) have achieved strong results for such predictive tasks but typically require extensive training data, which is often limited in real-world scenarios. One approach to mitigating data scarcity is leveraging pre-trained models from related datasets. However, direct knowledge transfer between TGNNs is challenging due to their reliance on node-specific memory structures, making them inherently difficult to adapt across datasets. To address this, we introduce a novel transfer approach that disentangles node representations from their associated features through a structured bipartite encoding mechanism. This decoupling enables more effective transfer of memory components and other learned inductive patterns from one dataset to another. Empirical evaluations on real-world benchmarks demonstrate that our method significantly enhances TGNN performance in low-data regimes, outperforming non-transfer baselines by up to 56\% and surpassing existing transfer strategies by 36\%
- Abstract(参考訳): エンティティ間の動的相互作用は、ソーシャルプラットフォーム、金融システム、ヘルスケア、電子商取引のようなドメインで一般的である。
これらの相互作用は時間進化グラフとして効果的に表現することができ、将来の接続を予測することはレコメンデーションシステムのようなアプリケーションにおいて重要なタスクである。
テンポラルグラフニューラルネットワーク(TGNN)は、このような予測タスクに対して強力な結果を得たが、通常、現実世界のシナリオで制限される広範なトレーニングデータを必要とする。
データ不足を軽減する1つのアプローチは、関連するデータセットからトレーニング済みのモデルを活用することだ。
しかし、ノード固有のメモリ構造に依存しているため、TGNN間の直接的な知識伝達は困難であり、データセット間で適応することが本質的に困難である。
そこで本研究では,ノード表現を関連特徴から切り離す新しい転送手法を提案する。
この分離により、メモリコンポーネントやその他の学習された帰納的パターンを、あるデータセットから別のデータセットへより効果的に転送できる。
実世界のベンチマークによる実証評価では、我々の手法は低データ体制におけるTGNN性能を著しく向上させ、非転送ベースラインを最大56倍、既存の転送戦略を36倍に上回った。
関連論文リスト
- RelGNN: Composite Message Passing for Relational Deep Learning [56.48834369525997]
本稿では,リレーショナルデータベースの特徴を捉えた新しいGNNフレームワークであるRelGNNを紹介する。
我々のアプローチの核となるのは、高次三部構造を形成するノードの列である原子経路の導入である。
RelGNNは、最先端の精度を最大25%改善して一貫して達成している。
論文 参考訳(メタデータ) (2025-02-10T18:58:40Z) - TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
本稿では,Top-mアテンション機構アグリゲーションコンポーネントと近傍アグリゲーションコンポーネントを統合した,革新的なグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
提案手法の有効性を評価するため,提案手法をGNN分野において未探索の新たな課題である引用感情予測に適用した。
論文 参考訳(メタデータ) (2024-11-23T05:31:25Z) - Federated Temporal Graph Clustering [9.779760673367663]
時間グラフクラスタリングは、時間とともに関係や実体が変化する動的なグラフにおいて意味のある構造を発見する複雑なタスクである。
既存の方法は一般的に集中的なデータ収集を必要とし、これはプライバシーと通信上の重大な課題を引き起こす。
複数のクライアントをまたいだグラフニューラルネットワーク(GNN)の分散トレーニングを可能にする新しいフェデレーション時間グラフクラスタリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T08:04:57Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Novel Representation Learning Technique using Graphs for Performance
Analytics [0.0]
本稿では,グラフニューラルネットワーク(GNN)技術の進歩を活用するために,パフォーマンスデータをグラフに変換する新しいアイデアを提案する。
ソーシャルネットワークのような他の機械学習アプリケーションドメインとは対照的に、グラフは提供されない。
我々は,GNNから生成された埋め込みの有効性を,単純なフィードフォワードニューラルネットワークによる回帰処理の性能評価に基づいて評価した。
論文 参考訳(メタデータ) (2024-01-19T16:34:37Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
同時に、複数のアップストリームとダウンストリームのタスクで1つのモデルをトレーニングする。
共ファインタニングは、同じデータ量を使用する場合、従来のトランスファーラーニングよりも優れていることを示す。
さらに、複数のアップストリームデータセットへのアプローチを簡単に拡張して、パフォーマンスをさらに向上する方法も示しています。
論文 参考訳(メタデータ) (2022-07-08T10:25:47Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
フェデレーション学習は、これらのクライアントのローカルデータを中央サーバに転送することなく、クライアント間での学習を促進する。
圧縮勾配降下のための非線形量子化を提案し、フェデレーションラーニングで容易に利用することができる。
本システムは,訓練過程の収束と精度を維持しつつ,通信コストを最大3桁まで削減する。
論文 参考訳(メタデータ) (2020-12-15T12:20:28Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。