論文の概要: TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2411.15458v1
- Date: Sat, 23 Nov 2024 05:31:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:23:17.841837
- Title: TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning
- Title(参考訳): TANGNN: グラフ表現学習のためのトップmアテンション機構を備えた簡潔でスケーラブルで効果的なグラフニューラルネットワーク
- Authors: Jiawei E, Yinglong Zhang, Xuewen Xia, Xing Xu,
- Abstract要約: 本稿では,Top-mアテンション機構アグリゲーションコンポーネントと近傍アグリゲーションコンポーネントを統合した,革新的なグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
提案手法の有効性を評価するため,提案手法をGNN分野において未探索の新たな課題である引用感情予測に適用した。
- 参考スコア(独自算出の注目度): 7.879217146851148
- License:
- Abstract: In the field of deep learning, Graph Neural Networks (GNNs) and Graph Transformer models, with their outstanding performance and flexible architectural designs, have become leading technologies for processing structured data, especially graph data. Traditional GNNs often face challenges in capturing information from distant vertices effectively. In contrast, Graph Transformer models are particularly adept at managing long-distance node relationships. Despite these advantages, Graph Transformer models still encounter issues with computational and storage efficiency when scaled to large graph datasets. To address these challenges, we propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component, effectively enhancing the model's ability to aggregate relevant information from both local and extended neighborhoods at each layer. This method not only improves computational efficiency but also enriches the node features, facilitating a deeper analysis of complex graph structures. Additionally, to assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field. Accordingly, we constructed a dedicated citation network, ArXivNet. In this dataset, we specifically annotated the sentiment polarity of the citations (positive, neutral, negative) to enable in-depth sentiment analysis. Our approach has shown superior performance across a variety of tasks including vertex classification, link prediction, sentiment prediction, graph regression, and visualization. It outperforms existing methods in terms of effectiveness, as demonstrated by experimental results on multiple datasets.
- Abstract(参考訳): ディープラーニングの分野では、優れたパフォーマンスと柔軟なアーキテクチャ設計を備えたグラフニューラルネットワーク(GNN)とグラフトランスフォーマーモデルが、構造化データ、特にグラフデータを処理する主要な技術となっている。
伝統的なGNNは、遠方の頂点から情報を効果的に取得する上で、しばしば課題に直面している。
対照的に、グラフトランスフォーマーモデルは、長距離ノード関係の管理に特に適しています。
これらの利点にもかかわらず、グラフトランスフォーマーモデルは、大きなグラフデータセットにスケールする場合、計算とストレージ効率の問題にまだ直面している。
これらの課題に対処するために、Top-mアテンションメカニズム集約コンポーネントと近隣アグリゲーションコンポーネントを統合した革新的なグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
この手法は計算効率を向上するだけでなく、ノードの特徴も強化し、複雑なグラフ構造のより深い解析を容易にする。
また,提案モデルの有効性を評価するために,これまでGNNで探索されていなかった新しい課題である引用感情予測に適用した。
そこで我々はArXivNetという専用ネットワークを構築した。
本データセットでは,引用の感情極性(肯定的,中立的,否定的)を特にアノテートし,深い感情分析を可能にした。
提案手法は,頂点分類,リンク予測,感情予測,グラフ回帰,可視化など,様々なタスクにおいて優れた性能を示す。
複数のデータセットで実験結果が示すように、既存の手法よりも有効性が高い。
関連論文リスト
- Learning From Graph-Structured Data: Addressing Design Issues and Exploring Practical Applications in Graph Representation Learning [2.492884361833709]
グラフ表現学習とグラフニューラルネットワーク(GNN)の最近の進歩を概観する。
グラフ構造化データを扱うように設計されたGNNは、複雑な関係情報から洞察と予測を引き出すのに長けている。
我々の研究は、GNNの能力を掘り下げ、その基礎設計と現実の課題に対処するための応用について調べている。
論文 参考訳(メタデータ) (2024-11-09T19:10:33Z) - Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
本稿では,インターネットの急速な発展に伴う複雑なグラフデータ処理におけるグラフニューラルネットワーク(GNN)の適用と課題について考察する。
自己監督機構を導入することにより、グラフデータの多様性と複雑さに対する既存モデルの適合性を向上させることが期待されている。
論文 参考訳(メタデータ) (2024-10-23T07:14:37Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Ensemble Learning for Graph Neural Networks [28.3650473174488]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための様々な分野で成功している。
本稿では,GNNの性能とロバスト性向上のためのアンサンブル学習手法の適用について検討する。
論文 参考訳(メタデータ) (2023-10-22T03:55:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Improving Graph Neural Networks with Simple Architecture Design [7.057970273958933]
グラフニューラルネットワークの重要な設計戦略をいくつか紹介する。
簡便で浅いモデルである特徴選択グラフニューラルネットワーク(FSGNN)を紹介します。
提案手法は,他のGNNモデルよりも優れており,ノード分類タスクの精度が最大64%向上していることを示す。
論文 参考訳(メタデータ) (2021-05-17T06:46:01Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
ノードやエッジの分類やリンクの予測といったタスクで大きな成功を収めたグラフニューラルネットワーク(GNN)に注目した。
グラフ技術の進歩には,大規模ネットワーク処理のための新たなアプローチが必要である。
私たちは、ディープラーニングコミュニティで成功したと知られている既存のツールとフレームワークを使用して、GNNを並列化する方法を研究します。
論文 参考訳(メタデータ) (2020-12-20T04:20:38Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。