論文の概要: Hierarchical graph sampling based minibatch learning with chain preservation and variance reduction
- arxiv url: http://arxiv.org/abs/2503.00860v3
- Date: Sun, 09 Mar 2025 03:23:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:40:02.401473
- Title: Hierarchical graph sampling based minibatch learning with chain preservation and variance reduction
- Title(参考訳): 連鎖保存と分散還元を考慮した階層グラフサンプリングに基づくミニバッチ学習
- Authors: Qia Hu, Bo Jiao,
- Abstract要約: グラフサンプリングに基づくグラフ畳み込みネットワーク(GCN)は、ミニバッチトレーニング中に前と後ろの伝播からサンプリングを分離する。
階層的なグラフサンプリングに基づく学習手法であるHIS_GCNsを提案する。
- 参考スコア(独自算出の注目度): 1.03590082373586
- License:
- Abstract: Graph sampling based Graph Convolutional Networks (GCNs) decouple the sampling from the forward and backward propagation during minibatch training, which exhibit good scalability in terms of layer depth and graph size. We propose HIS_GCNs, a hierarchical importance graph sampling based learning method. By constructing minibatches using sampled subgraphs, HIS_GCNs gives attention to the importance of both core and periphery nodes/edges in a scale-free training graph. Specifically, it preserves the centrum of the core to most minibatches, which maintains connectivity between periphery nodes, and samples periphery edges without core node interference, in order to keep more long chains composed entirely of low-degree nodes in the same minibatch. HIS_GCNs can maximize the discrete Ricci curvature (i.e., Ollivier-Ricci curvatures) of the edges in a subgraph that enables the preservation of important chains for information propagation, and can achieve a low node embedding variance and a high convergence speed. Diverse experiments on Graph Neural Networks (GNNs) with node classification tasks confirm superior performance of HIS_GCNs in both accuracy and training time.
- Abstract(参考訳): グラフサンプリングに基づくグラフ畳み込みネットワーク(GCN)は、ミニバッチトレーニング中に前と後ろの伝播からサンプリングを分離する。
階層的なグラフサンプリングに基づく学習手法であるHIS_GCNsを提案する。
サンプルサブグラフを用いてミニバッチを構築することで、HIS_GCNは、スケールフリーのトレーニンググラフにおいて、コアノードと周辺ノード/エッジの両方の重要性に注意を向ける。
具体的には、コアの遠心部をほとんどのミニバッチに保存し、コアノードの干渉のない周辺ノードとサンプル周辺エッジ間の接続を維持し、同じミニバッチ内の低次ノードからなるより長いチェーンを維持する。
HIS_GCNは、情報伝達のための重要な連鎖の保存を可能にするサブグラフにおいてエッジの離散リッチ曲率(すなわちOllivier-Ricci曲率)を最大化することができ、分散と高収束速度の低ノード埋め込みを実現することができる。
ノード分類タスクを持つグラフニューラルネットワーク(GNN)の様々な実験により、精度とトレーニング時間の両方でHIS_GCNの優れた性能が確認された。
関連論文リスト
- Sparse Decomposition of Graph Neural Networks [20.768412002413843]
本稿では,集約中に含まれるノード数を削減する手法を提案する。
線形変換された特徴の重み付け和を用いてノード表現の近似を学習し、スパース分解によりこれを実現できる。
提案手法は推論高速化のために設計された他のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-25T17:52:16Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - GRAPES: Learning to Sample Graphs for Scalable Graph Neural Networks [2.4175455407547015]
グラフニューラルネットワークは、隣人からの情報を集約することでノードを表現することを学ぶ。
いくつかの既存手法では、ノードの小さなサブセットをサンプリングし、GNNをもっと大きなグラフにスケールすることで、この問題に対処している。
本稿では,GNNのトレーニングに不可欠なノードの集合を識別する適応サンプリング手法であるGRAPESを紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:08:47Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - $\rm A^2Q$: Aggregation-Aware Quantization for Graph Neural Networks [18.772128348519566]
グラフニューラルネットワーク(GNN)のための集約型混合精度量子化(rm A2Q$)を提案する。
本手法は,ノードレベルのタスクとグラフレベルのタスクで最大11.4%,9.5%の精度向上を実現し,専用ハードウェアアクセラレータで最大2倍の高速化を実現する。
論文 参考訳(メタデータ) (2023-02-01T02:54:35Z) - Non-Recursive Graph Convolutional Networks [33.459371861932574]
非再帰グラフ畳み込みネットワーク(NRGCN)と呼ばれる新しいアーキテクチャを提案し、GCNのトレーニング効率と学習パフォーマンスの両方を改善します。
NRGCNは、内部層凝集と層非依存サンプリングに基づいて、各ノードの隣人のホップを表す。
このようにして、各ノードは、隣人の各ホップから独立して抽出された情報を連結することで直接表現することができる。
論文 参考訳(メタデータ) (2021-05-09T08:12:18Z) - SPAGAN: Shortest Path Graph Attention Network [187.75441278910708]
グラフ畳み込みネットワーク(GCN)は最近、グラフとして表現できる非グリッド構造データを分析する可能性を示した。
本研究では,SPAGAN (Shortest Path Graph Attention Network) と呼ばれる新しいGCNモデルを提案する。
論文 参考訳(メタデータ) (2021-01-10T03:18:34Z) - MG-GCN: Fast and Effective Learning with Mix-grained Aggregators for
Training Large Graph Convolutional Networks [20.07942308916373]
グラフ畳み込みネットワーク(GCN)は、隣人層の情報を層ごとに集約することでノードの埋め込みを生成する。
GCNの高計算とメモリコストにより、大きなグラフのトレーニングが不可能になる。
MG-GCNと呼ばれる新しいモデルでは、精度、トレーニング速度、収束速度、メモリコストの点で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-11-17T14:51:57Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
逐次グラフ畳み込みネットワーク(GCN)を用いた新しいプールベースアクティブラーニングフレームワークを提案する。
少数のランダムなサンプル画像がシードラベル付き例であるので、グラフのパラメータを学習してラベル付きノードと非ラベル付きノードを区別する。
我々はGCNの特性を利用してラベル付けされたものと十分に異なる未ラベルの例を選択する。
論文 参考訳(メタデータ) (2020-06-18T00:55:10Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
グラフ畳み込みニューラルネットワーク(GCN)は近年,グラフに基づく半教師付き半教師付き分類において有望な結果を示した。
グラフに基づく半教師付き学習のためのGCN(GPGC)を用いたGP回帰モデルを提案する。
GPGCを評価するための広範囲な実験を行い、他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-02-26T10:02:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。