Simulating quantum instruments with projective measurements and quantum post-processing
- URL: http://arxiv.org/abs/2503.00956v1
- Date: Sun, 02 Mar 2025 16:31:03 GMT
- Title: Simulating quantum instruments with projective measurements and quantum post-processing
- Authors: Shishir Khandelwal, Armin Tavakoli,
- Abstract summary: We show that the simulability of instruments can be connected to an entanglement classification problem.<n>This leads to a computationally efficient necessary condition for simulation of generic instruments and to a complete characterisation for qubits.
- Score: 12.084121187559864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum instruments describe both the classical outcome and the updated state associated with a quantum measurement. We ask whether these processes can be simulated using only a natural subset of resources, namely projective measurements on the system and quantum processing of the post-measurement states. We show that the simulability of instruments can be connected to an entanglement classification problem. This leads to a computationally efficient necessary condition for simulation of generic instruments and to a complete characterisation for qubits. We use this to address relevant quantum information tasks, namely (i) the noise-tolerance of standard qubit unsharp measurements, (ii) non-projective advantages in information-disturbance trade-offs, and (iii) increased sequential Bell inequality violations under projective measurements. Moreover, we consider also $d$-dimensional L\"uders instruments that correspond to weak versions of standard basis measurements and show that for large $d$ these can permit scalable noise-advantages over projective implementations.
Related papers
- Quantifying Quantum Steering with Limited Resources: A Semi-supervised Machine Learning Approach [3.6384366906530623]
Quantum steering is an intermediate correlation lying between entanglement and nonlocality.<n>SDP has proven to be a valuable tool to quantify quantum steering.<n>In this work, we utilize the semi-supervised self-training model to estimate the steerable weight.
arXiv Detail & Related papers (2025-01-18T12:14:37Z) - Single Qubit State Estimation on NISQ Devices with Limited Resources and
SIC-POVMs [0.0]
We consider the problem of estimating the quantum state of a qubit in a quantum processing unit without conducting direct measurements of it.
We implement and test the circuit using the quantum computer of the Technical Research Centre of Finland as well as an IBM quantum computer.
arXiv Detail & Related papers (2023-08-15T09:27:52Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Lowering Tomography Costs in Quantum Simulation with a Symmetry
Projected Operator Basis [0.0]
For most quantum simulations, the targeted state obeys a number of symmetries inherent to the system Hamiltonian.
We obtain a alternative symmetry projected basis of measurement that reduces the number of measurements needed.
Our scheme can be implemented at no additional cost on a quantum computer, can be implemented under a variety of measurement or tomography schemes, and is fairly resilient under noise.
arXiv Detail & Related papers (2020-08-13T17:29:39Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - A hybrid quantum-classical approach to mitigating measurement errors [3.8073142980733]
We present a scheme to deal with unknown quantum noise and show that it can be used to mitigate errors in measurement readout with NISQ devices.
The scheme is implemented in quantum algorithms with NISQ devices.
arXiv Detail & Related papers (2020-03-27T10:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.