論文の概要: A Semantic Search Pipeline for Causality-driven Adhoc Information Retrieval
- arxiv url: http://arxiv.org/abs/2503.01003v1
- Date: Sun, 02 Mar 2025 19:59:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:26:17.724455
- Title: A Semantic Search Pipeline for Causality-driven Adhoc Information Retrieval
- Title(参考訳): 因果性駆動型アドホック情報検索のための意味探索パイプライン
- Authors: Dhairya Dalal, Sharmi Dev Gupta, Bentolhoda Binaei,
- Abstract要約: コーサリティ駆動型アドホック情報検索(CAIR-2021)共有タスクのための教師なし意味探索パイプラインを提案する。
CAIR共有タスクは、クエリイベントの可能性のある原因を含むドキュメントの検索をサポートするために、従来の情報検索を拡張する。
成功したシステムは、クエリイベントに因果関係のあるイベントの因果的記述を含むトピック文書とドキュメントを区別できなければならない。
- 参考スコア(独自算出の注目度): 1.1196974000738733
- License:
- Abstract: We present a unsupervised semantic search pipeline for the Causality-driven Adhoc Information Retrieval (CAIR-2021) shared task. The CAIR shared task expands traditional information retrieval to support the retrieval of documents containing the likely causes of a query event. A successful system must be able to distinguish between topical documents and documents containing causal descriptions of events that are causally related to the query event. Our approach involves aggregating results from multiple query strategies over a semantic and lexical index. The proposed approach leads the CAIR-2021 leaderboard and outperformed both traditional IR and pure semantic embedding-based approaches.
- Abstract(参考訳): コーサリティ駆動型アドホック情報検索(CAIR-2021)共有タスクのための教師なし意味探索パイプラインを提案する。
CAIR共有タスクは、クエリイベントの可能性のある原因を含むドキュメントの検索をサポートするために、従来の情報検索を拡張する。
成功したシステムは、クエリイベントに因果関係のあるイベントの因果的記述を含むトピック文書とドキュメントを区別できなければならない。
我々のアプローチでは、セマンティックインデックスと語彙インデックスを使って、複数のクエリ戦略の結果を集約する。
提案されたアプローチは、CAIR-2021のリーダーボードをリードし、従来のIRと純粋なセマンティック埋め込みベースのアプローチの両方を上回った。
関連論文リスト
- QUIDS: Query Intent Generation via Dual Space Modeling [12.572815037915348]
本稿では,検索意図の理解を説明するために,返却文書における意味的関連性および無関係情報を利用する二重空間モデルを提案する。
提案手法は高品質な問合せインテント記述を生成し,既存の手法と最先端の問合せベース要約手法を比較検討する。
論文 参考訳(メタデータ) (2024-10-16T09:28:58Z) - Generative Retrieval Meets Multi-Graded Relevance [104.75244721442756]
GRADed Generative Retrieval (GR$2$)というフレームワークを紹介します。
GR$2$は2つの重要なコンポーネントに焦点を当てている。
マルチグレードとバイナリの関連性を持つデータセットの実験は,GR$2$の有効性を示した。
論文 参考訳(メタデータ) (2024-09-27T02:55:53Z) - Event GDR: Event-Centric Generative Document Retrieval [37.53593254200252]
イベント中心の生成文書検索モデルであるEvent GDRを提案する。
我々は、文書の包括性と内的内容の相関を保証するために、文書のモデル化にイベントと関係を用いる。
識別子構築では、イベントを適切に定義されたイベント分類にマッピングし、明示的な意味構造を持つ識別子を構築する。
論文 参考訳(メタデータ) (2024-05-11T02:55:11Z) - ExcluIR: Exclusionary Neural Information Retrieval [74.08276741093317]
本稿では,排他的検索のためのリソースセットであるExcluIRを提案する。
評価ベンチマークには3,452の高品質な排他的クエリが含まれている。
トレーニングセットには70,293の排他的クエリが含まれており、それぞれに正のドキュメントと負のドキュメントがペアリングされている。
論文 参考訳(メタデータ) (2024-04-26T09:43:40Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
本稿では,学習中に擬似クエリを利用して,生成したクエリと実際のクエリとの関係を徐々に向上させるカリキュラムサンプリング戦略を提案する。
ドメイン内およびドメイン外両方のデータセットに対する実験結果から,本手法が従来の高密度検索モデルより優れていることが示された。
論文 参考訳(メタデータ) (2022-12-18T15:57:46Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
本稿では,検索システムの2つのクラスにおいて,クエリとドキュメントの役割を逆転させることにより,検索タスクとしてのEQIの実現可能性について検討する。
本研究では,クエリのランク付けの質を評価するための評価基準を導出するとともに,近似EQIの様々な実践的側面に着目した経験的分析を行う。
論文 参考訳(メタデータ) (2021-10-14T20:19:27Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
本稿では,疑似関連性フィードバック(PRF)を用いて高密度検索のためのクエリ表現を改善する新しいクエリエンコーダであるANCE-PRFを提案する。
ANCE-PRF は BERT エンコーダを使用し、検索モデルである ANCE からクエリとトップ検索されたドキュメントを消費し、関連ラベルから直接クエリの埋め込みを生成する。
PRFエンコーダは、学習された注意機構でノイズを無視しながら、PRF文書から関連および補完的な情報を効果的にキャプチャする。
論文 参考訳(メタデータ) (2021-08-30T18:10:26Z) - Event-Driven Query Expansion [23.08079115356717]
まず,関連するイベントを検知してイベント関連クエリを拡張する手法を提案する。
クエリとイベントの両方に意味論的に関連する用語として拡張候補を導出する。
提案手法は,各種ニュースワイヤTRECデータセットの最先端手法と比較して,クエリ拡張性能を著しく向上することを示す。
論文 参考訳(メタデータ) (2020-12-22T14:56:54Z) - Query Understanding via Intent Description Generation [75.64800976586771]
問合せ理解のためのQ2ID(Query-to-Intent-Description)タスクを提案する。
クエリとその記述を利用してドキュメントの関連性を計算する既存のランキングタスクとは異なり、Q2IDは自然言語のインテント記述を生成するための逆タスクである。
Q2IDタスクにおける複数の最先端生成モデルとの比較により,本モデルの有効性を実証する。
論文 参考訳(メタデータ) (2020-08-25T08:56:40Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
本稿では,双方向トランスフォーマに基づくニューラルクエリ解決モデルQuReTeCを提案する。
我々はQuReTeCが最先端モデルより優れており、また、QuReTeCのトレーニングに必要な人為的なデータ量を大幅に削減するために、我々の遠隔監視手法が有効であることを示す。
論文 参考訳(メタデータ) (2020-05-24T11:37:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。