論文の概要: Underdamped Diffusion Bridges with Applications to Sampling
- arxiv url: http://arxiv.org/abs/2503.01006v1
- Date: Sun, 02 Mar 2025 20:22:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:24:46.017425
- Title: Underdamped Diffusion Bridges with Applications to Sampling
- Title(参考訳): アンダーダム拡散橋とサンプリングへの応用
- Authors: Denis Blessing, Julius Berner, Lorenz Richter, Gerhard Neumann,
- Abstract要約: 対象分布に先立って輸送する拡散ブリッジを学習するための一般的なフレームワークを提供する。
本手法は, 対象分布からサンプルにアクセスすることなく, 正規化されていない密度からサンプルを抽出する難題に適用する。
- 参考スコア(独自算出の注目度): 19.734804898620233
- License:
- Abstract: We provide a general framework for learning diffusion bridges that transport prior to target distributions. It includes existing diffusion models for generative modeling, but also underdamped versions with degenerate diffusion matrices, where the noise only acts in certain dimensions. Extending previous findings, our framework allows to rigorously show that score matching in the underdamped case is indeed equivalent to maximizing a lower bound on the likelihood. Motivated by superior convergence properties and compatibility with sophisticated numerical integration schemes of underdamped stochastic processes, we propose \emph{underdamped diffusion bridges}, where a general density evolution is learned rather than prescribed by a fixed noising process. We apply our method to the challenging task of sampling from unnormalized densities without access to samples from the target distribution. Across a diverse range of sampling problems, our approach demonstrates state-of-the-art performance, notably outperforming alternative methods, while requiring significantly fewer discretization steps and no hyperparameter tuning.
- Abstract(参考訳): 対象分布に先立って輸送する拡散ブリッジを学習するための一般的なフレームワークを提供する。
生成的モデリングのための既存の拡散モデルを含むが、ノイズが特定の次元でのみ作用する縮退拡散行列を持つ過度なバージョンも含んでいる。
これまでの知見を拡張して,本フレームワークは,アンダーダムドケースにおけるスコアマッチングが,可能性の低いバウンダリの最大化と真に等価であることを示す。
本研究は, より優れた収束特性と, 基礎となる確率過程の高度な数値積分スキームとの整合性により, 一般密度の発達が, 固定されたノイズ発生過程によって規定されるのではなく学習されるような, ゼンフ{アンダーダムド拡散ブリッジを提案する。
本手法は, 対象分布からサンプルにアクセスすることなく, 正規化されていない密度からサンプルを抽出する難題に適用する。
多様なサンプリング問題に対して,本手法は,高パラメータチューニングを必要とせず,離散化のステップを著しく減らしながら,従来の手法よりも優れた性能を示す。
関連論文リスト
- Learned Reference-based Diffusion Sampling for multi-modal distributions [2.1383136715042417]
本稿では,学習参照に基づく拡散サンプリング(LRDS)について紹介する。
LRDSは、高密度空間領域にあるサンプルの参照拡散モデルを学ぶことによって、2段階で進行する。
LRDSは、様々な難解な分布上の競合するアルゴリズムと比較して、目標分布に関する事前知識を最大限に活用することが実験的に実証された。
論文 参考訳(メタデータ) (2024-10-25T10:23:34Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
逆問題の解法として, 後方分布からのサンプルの変分推論手法を提案する。
本手法はユークリッド空間の標準信号や多様体上の信号に適用可能であることを示す。
論文 参考訳(メタデータ) (2024-07-25T09:53:12Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
現在のディープラーニングアプローチは、正確なサンプル確率を生み出す生成モデルに依存している。
この研究は、この制限を解除し、高度に表現力のある潜在変数モデルを採用する可能性を開放する手法を導入する。
我々は,データフリーなコンビネーション最適化におけるアプローチを実験的に検証し,幅広いベンチマーク問題に対して新しい最先端の手法を実現することを実証した。
論文 参考訳(メタデータ) (2024-06-03T17:55:02Z) - Improved sampling via learned diffusions [8.916420423563478]
近年,制御拡散過程を用いた対象分布からの深層学習に基づくアプローチが提案されている。
我々はこれらのアプローチを一般化されたシュリンガー橋問題(英語版)の特別な場合とみなす。
時間反転拡散過程の経路空間測度間のばらつきに基づく変分定式化を提案する。
論文 参考訳(メタデータ) (2023-07-03T17:58:26Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
タンパク質設計における一般的なアプローチは、生成モデルと条件付きサンプリングのための識別モデルを組み合わせることである。
離散拡散モデルのためのガイダンス手法であるdiffusioN Optimized Smpling (NOS)を提案する。
NOSは、構造に基づく手法の重要な制限を回避し、シーケンス空間で直接設計を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T16:31:24Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - DensePure: Understanding Diffusion Models towards Adversarial Robustness [110.84015494617528]
拡散モデルの特性を解析し,それらが証明された堅牢性を高める条件を確立する。
事前訓練されたモデル(すなわち分類器)の信頼性向上を目的とした新しいDensePure法を提案する。
このロバストな領域は多重凸集合の和であり、以前の研究で特定されたロバストな領域よりもはるかに大きい可能性が示されている。
論文 参考訳(メタデータ) (2022-11-01T08:18:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。