論文の概要: Amortized Posterior Sampling with Diffusion Prior Distillation
- arxiv url: http://arxiv.org/abs/2407.17907v1
- Date: Thu, 25 Jul 2024 09:53:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 14:28:24.769280
- Title: Amortized Posterior Sampling with Diffusion Prior Distillation
- Title(参考訳): Diffusion prestillation によるAmortized Posterior Smpling の1例
- Authors: Abbas Mammadov, Hyungjin Chung, Jong Chul Ye,
- Abstract要約: 逆問題の解法として, 後方分布からのサンプルの変分推論手法を提案する。
本手法はユークリッド空間の標準信号や多様体上の信号に適用可能であることを示す。
- 参考スコア(独自算出の注目度): 55.03585818289934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a variational inference approach to sample from the posterior distribution for solving inverse problems. From a pre-trained diffusion model, our approach trains a conditional flow model to minimize the divergence between the proposal variational distribution and the posterior distribution implicitly defined through the diffusion model. Once trained, the flow model is capable of sampling from the posterior distribution with a single NFE, amortized with respect to the measurement. The proposed method paves a new path for distilling a diffusion prior for efficient posterior sampling. We show that our method is applicable to standard signals in Euclidean space, as well as signals on manifold.
- Abstract(参考訳): 逆問題の解法として, 後方分布からのサンプルの変分推論手法を提案する。
事前学習した拡散モデルから,提案した変動分布と拡散モデルによって暗黙的に定義された後続分布とのばらつきを最小限に抑えるために,条件付き流れモデルを訓練する。
トレーニングが完了すると、フローモデルは単一のNFEで後部分布からサンプリングすることができ、測定値に対して償却される。
提案手法は, 効率の良い後方サンプリングに先立って, 拡散を蒸留するための新しい経路を舗装する。
本手法はユークリッド空間の標準信号や多様体上の信号に適用可能であることを示す。
関連論文リスト
- Enhancing Diffusion Posterior Sampling for Inverse Problems by Integrating Crafted Measurements [45.70011319850862]
拡散モデルは視覚生成のための強力な基礎モデルとして登場してきた。
現在の後方サンプリングに基づく手法では、測定結果を後方サンプリングに取り込み、対象データの分布を推定する。
本研究は, 早期に高周波情報を早期に導入し, より大きい推定誤差を生じさせることを示す。
工芸品計測を取り入れた新しい拡散後サンプリング手法DPS-CMを提案する。
論文 参考訳(メタデータ) (2024-11-15T00:06:57Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
本稿では,従来の離散拡散に基づく画像生成モデルを活用することによって,線形逆問題に対処する新しい手法を提案する。
我々の知る限りでは、これは画像逆問題を解決するために離散拡散モデルに基づく先行手法を使う最初のアプローチである。
論文 参考訳(メタデータ) (2024-10-09T06:18:25Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
そこで本稿では, 償却変分推論の観点から, 拡散による逆問題の解法を提案する。
我々の償却推論は、測定結果を対応するクリーンデータの暗黙の後方分布に直接マッピングする関数を学習し、未知の計測でも単一ステップの後方サンプリングを可能にする。
論文 参考訳(メタデータ) (2024-07-23T02:14:18Z) - New algorithms for sampling and diffusion models [0.0]
本稿では,未知分布を持つ拡散生成モデルのための新しいサンプリング手法と新しいアルゴリズムを提案する。
我々のアプローチは、拡散生成モデルにおいて広く採用されている逆拡散過程の概念に着想を得たものである。
論文 参考訳(メタデータ) (2024-06-14T02:30:04Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
本研究では,非正規化密度やエネルギー関数を持つ分布からサンプルを抽出する拡散モデルの訓練問題について検討する。
シミュレーションに基づく変分法や非政治手法など,拡散構造推論手法のベンチマークを行った。
我々の結果は、過去の研究の主張に疑問を投げかけながら、既存のアルゴリズムの相対的な利点を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-07T18:51:49Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - An optimal control perspective on diffusion-based generative modeling [9.806130366152194]
微分方程式(SDE)に基づく最適制御と生成モデルとの接続を確立する。
特にハミルトン・ヤコビ・ベルマン方程式を導出し、基礎となるSDE限界の対数密度の進化を制御している。
非正規化密度から抽出する新しい拡散法を開発した。
論文 参考訳(メタデータ) (2022-11-02T17:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。