ALinFiK: Learning to Approximate Linearized Future Influence Kernel for Scalable Third-Parity LLM Data Valuation
- URL: http://arxiv.org/abs/2503.01052v1
- Date: Sun, 02 Mar 2025 22:51:12 GMT
- Title: ALinFiK: Learning to Approximate Linearized Future Influence Kernel for Scalable Third-Parity LLM Data Valuation
- Authors: Yanzhou Pan, Huawei Lin, Yide Ran, Jiamin Chen, Xiaodong Yu, Weijie Zhao, Denghui Zhang, Zhaozhuo Xu,
- Abstract summary: Large Language Models (LLMs) heavily rely on high-quality training data, making data valuation crucial for optimizing model performance.<n>We introduce a linearized future influence kernel (LinFiK), which assesses the value of individual data samples.<n>We propose ALinFiK, a learning strategy to approximate LinFiK, enabling scalable data valuation.
- Score: 11.36712576361739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) heavily rely on high-quality training data, making data valuation crucial for optimizing model performance, especially when working within a limited budget. In this work, we aim to offer a third-party data valuation approach that benefits both data providers and model developers. We introduce a linearized future influence kernel (LinFiK), which assesses the value of individual data samples in improving LLM performance during training. We further propose ALinFiK, a learning strategy to approximate LinFiK, enabling scalable data valuation. Our comprehensive evaluations demonstrate that this approach surpasses existing baselines in effectiveness and efficiency, demonstrating significant scalability advantages as LLM parameters increase.
Related papers
- Augmented Relevance Datasets with Fine-Tuned Small LLMs [0.7022492404644501]
This paper explores the use of small, fine-tuned large language models (LLMs) to automate relevance assessment.
We fine-tuned small LLMs to enhance relevance assessments, thereby improving dataset creation quality for downstream ranking model training.
arXiv Detail & Related papers (2025-04-14T02:35:00Z) - Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
We introduce Dynamic Noise Preference Optimization (DNPO) to ensure consistent improvements across iterations.
In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6%.
DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations.
arXiv Detail & Related papers (2025-02-08T01:20:09Z) - Optimizing Pretraining Data Mixtures with LLM-Estimated Utility [52.08428597962423]
Large Language Models improve with increasing amounts of high-quality training data.
We find token-counts outperform manual and learned mixes, indicating that simple approaches for dataset size and diversity are surprisingly effective.
We propose two complementary approaches: UtiliMax, which extends token-based $200s by incorporating utility estimates from reduced-scale ablations, achieving up to a 10.6x speedup over manual baselines; and Model Estimated Data Utility (MEDU), which leverages LLMs to estimate data utility from small samples, matching ablation-based performance while reducing computational requirements by $simx.
arXiv Detail & Related papers (2025-01-20T21:10:22Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
This study investigates the impact of different type of preference data on model performance.
It aims to reduce their dependency on extensive amounts of preference data, which is expensive to collect.
arXiv Detail & Related papers (2024-10-22T00:11:41Z) - VickreyFeedback: Cost-efficient Data Construction for Reinforcement Learning from Human Feedback [2.07180164747172]
This paper addresses the cost-efficiency aspect of Reinforcement Learning from Human Feedback (RLHF)<n>RLHF leverages datasets of human preferences over outputs of large language models (LLM)<n>We show that introducing an auction mechanism can play an essential role in enhancing the cost-efficiency of RLHF.
arXiv Detail & Related papers (2024-09-27T03:15:07Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.
LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.
Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence Functions [34.99034454081842]
Large language models (LLMs) are trained on a vast amount of human-written data, but data providers often remain uncredited.
In this work, we focus on influence functions, a popular gradient-based data valuation method, and significantly improve its scalability.
We also introduce LogIX, a software package that can transform existing training code into data valuation code with minimal effort.
arXiv Detail & Related papers (2024-05-22T19:39:05Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Fairness-Aware Data Valuation for Supervised Learning [4.874780144224057]
We propose Fairness-Aware Data vauatiOn (FADO) to incorporate fairness concerns into a series of ML-related tasks.
We show how FADO can be applied as the basis for unfairness mitigation pre-processing techniques.
Our methods achieve promising results -- up to a 40 p.p. improvement in fairness at a less than 1 p.p. loss in performance compared to a baseline.
arXiv Detail & Related papers (2023-03-29T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.