Identity documents recognition and detection using semantic segmentation with convolutional neural network
- URL: http://arxiv.org/abs/2503.01085v1
- Date: Mon, 03 Mar 2025 01:13:28 GMT
- Title: Identity documents recognition and detection using semantic segmentation with convolutional neural network
- Authors: Mykola Kozlenko, Volodymyr Sendetskyi, Oleksiy Simkiv, Nazar Savchenko, Andy Bosyi,
- Abstract summary: The aim of this research is to prove the feasibility of the proposed technique and to obtain quality metrics.<n>The methodology of the research is to evaluate the deep learning detection model trained on the mobile identity document video dataset.<n>The paper reports an accuracy above 0.75 for the intersection over union (IoU) threshold value of 0.8.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object recognition and detection are well-studied problems with a developed set of almost standard solutions. Identity documents recognition, classification, detection, and localization are the tasks required in a number of applications, particularly, in physical access control security systems at critical infrastructure premises. In this paper, we propose the new original architecture of a model based on an artificial convolutional neural network and semantic segmentation approach for the recognition and detection of identity documents in images. The challenge with the processing of such images is the limited computational performance and the limited amount of memory when such an application is running on industrial oneboard microcomputer hardware. The aim of this research is to prove the feasibility of the proposed technique and to obtain quality metrics. The methodology of the research is to evaluate the deep learning detection model trained on the mobile identity document video dataset. The dataset contains five hundred video clips for fifty different identity document types. The numerical results from simulations are used to evaluate the quality metrics. We present the results as accuracy versus threshold of the intersection over union value. The paper reports an accuracy above 0.75 for the intersection over union (IoU) threshold value of 0.8. Besides, we assessed the size of the model and proved the feasibility of running the model on an industrial one-board microcomputer or smartphone hardware.
Related papers
- Joint Neural Networks for One-shot Object Recognition and Detection [5.389851588398047]
This paper presents a novel joint neural networks approach to address the challenging one-shot object recognition and detection tasks.
Inspired by Siamese neural networks and state-of-art multi-box detection approaches, the joint neural networks are able to perform object recognition and detection for categories that remain unseen during the training process.
The proposed approach achieves 61.41% accuracy for one-shot object recognition on the MiniImageNet dataset and 47.1% mAP for one-shot object detection when trained on the dataset and tested.
arXiv Detail & Related papers (2024-08-01T16:48:03Z) - Straight Through Gumbel Softmax Estimator based Bimodal Neural Architecture Search for Audio-Visual Deepfake Detection [6.367999777464464]
multimodal deepfake detectors rely on conventional fusion methods, such as majority rule and ensemble voting.
In this paper, we introduce the Straight-through Gumbel-Softmax framework, offering a comprehensive approach to search multimodal fusion model architectures.
Experiments on the FakeAVCeleb and SWAN-DF datasets demonstrated an impressive AUC value 94.4% achieved with minimal model parameters.
arXiv Detail & Related papers (2024-06-19T09:26:22Z) - Unveiling Document Structures with YOLOv5 Layout Detection [0.0]
This research investigates the utilization of YOLOv5, a cutting-edge computer vision model, for the purpose of rapidly identifying document layouts and extracting unstructured data.
The main objective is to create an autonomous system that can effectively recognize document layouts and extract unstructured data.
arXiv Detail & Related papers (2023-09-29T07:45:10Z) - Hybrid Optimized Deep Convolution Neural Network based Learning Model
for Object Detection [0.0]
Object identification is one of the most fundamental and difficult issues in computer vision.
In recent years, deep learning-based object detection techniques have grabbed the public's interest.
In this study, a unique deep learning classification technique is used to create an autonomous object detecting system.
The suggested framework has a detection accuracy of 0.9864, which is greater than current techniques.
arXiv Detail & Related papers (2022-03-02T04:39:37Z) - A Robust Framework for Deep Learning Approaches to Facial Emotion
Recognition and Evaluation [0.17398560678845074]
We propose a framework in which models developed for FER can be compared and contrasted against one another.
A lightweight convolutional neural network is trained on the AffectNet dataset.
A web application is developed and deployed with our proposed framework as a proof of concept.
arXiv Detail & Related papers (2022-01-30T02:10:01Z) - Finding Facial Forgery Artifacts with Parts-Based Detectors [73.08584805913813]
We design a series of forgery detection systems that each focus on one individual part of the face.
We use these detectors to perform detailed empirical analysis on the FaceForensics++, Celeb-DF, and Facebook Deepfake Detection Challenge datasets.
arXiv Detail & Related papers (2021-09-21T16:18:45Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications.
Learning highly accurate models relies on the availability of datasets with a large number of annotated images.
Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images.
arXiv Detail & Related papers (2021-05-27T23:34:06Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
Presentation attacks pose major challenges to most of the biometric modalities.
We propose a generalized deep learning-based presentation attack detection network, MVANet.
It is inspired by the simplicity and success of hybrid algorithm or fusion of multiple detection networks.
arXiv Detail & Related papers (2020-10-25T22:42:27Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.