A thermal-noise-resilient microwave quantum network traversing 4 K
- URL: http://arxiv.org/abs/2503.01133v1
- Date: Mon, 03 Mar 2025 03:28:37 GMT
- Title: A thermal-noise-resilient microwave quantum network traversing 4 K
- Authors: Jiawei Qiu, Zihao Zhang, Zilin Wang, Libo Zhang, Yuxuan Zhou, Xuandong Sun, Jiawei Zhang, Xiayu Linpeng, Song Liu, Jingjing Niu, Youpeng Zhong, Dapeng Yu,
- Abstract summary: Quantum communication at microwave frequencies has been constrained by the susceptibility of microwave photons to thermal noise.<n>We demonstrate a thermal-noise-resilient microwave quantum network that establishes coherent coupling between two superconducting qubits.<n>Our architecture overcomes the temperature-compatibility barrier for microwave quantum systems.
- Score: 17.366070623028758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum communication at microwave frequencies has been fundamentally constrained by the susceptibility of microwave photons to thermal noise, hindering their application in scalable quantum networks. Here we demonstrate a thermal-noise-resilient microwave quantum network that establishes coherent coupling between two superconducting qubits through a 4 K thermalized niobium-titanium transmission line. By overcoupling the communication channel to a cold load at 10 mK, we suppress the effective thermal occupancy of the channel to 0.06 photons through radiative cooling -- a two-order-of-magnitude reduction below ambient thermal noise. We then decouple the cold load and rapidly transfer microwave quantum states through the channel while it rethermalizes, achieving a 58.5% state transfer fidelity and a 52.3% Bell entanglement fidelity, both exceeding the classical communication threshold. Our architecture overcomes the temperature-compatibility barrier for microwave quantum systems, providing a scalable framework for distributed quantum computing and enabling hybrid quantum networks with higher-temperature semiconductor or photonic platforms.
Related papers
- Cryogenic microwave link for quantum local area networks [1.8304256783768633]
We present a prototype platform for a microwave QLAN based on a cryogenic link connecting two separate dilution cryostats over a distance of $6.6$ m.
We show that quantum entanglement is preserved at channel center temperatures up to $1$ K, paving the way towards microwave quantum communication at elevated temperatures.
arXiv Detail & Related papers (2023-08-23T19:34:56Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - High-Fidelity Quantum Information Transmission Using a Room-Temperature
Nonrefrigerated Lossy Microwave Waveguide [0.0]
Quantum microwave transmission is key to realizing modular superconducting quantum computers and distributed quantum networks.
The closeness of the transmitted quantum state to the source-generated quantum state at the input of the transmission link degrades due to the presence of incoherent photons.
We propose a novel method for high-fidelity quantum microwave transmission using a room-temperature lossy waveguide.
arXiv Detail & Related papers (2021-07-26T22:41:18Z) - A low-noise on-chip coherent microwave source [0.0]
We report an on-chip device that is based on a Josephson junction coupled to a spiral resonator and is capable of coherent continuous-wave microwave emission.
The infidelity of typical quantum gate operations due to the phase noise of this cryogenic 25-pW microwave source is less than 0.1% up to 10-ms evolution times.
arXiv Detail & Related papers (2021-03-13T04:51:53Z) - Microwave Quantum Link between Superconducting Circuits Housed in
Spatially Separated Cryogenic Systems [43.55994393060723]
We report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters.
We transfer qubit states and generate entanglement on-demand with average transfer and target state fidelities of 85.8 % and 79.5 %, respectively.
arXiv Detail & Related papers (2020-08-04T15:36:51Z) - Primary thermometry of propagating microwaves in the quantum regime [0.0]
We propose and experimentally demonstrate thermometry of propagating microwaves using a transmon-type superconducting circuit.
Our device operates continuously, with a sensitivity down to $4times 10-4$ photons/$sqrtmboxHz$ and a bandwidth of 40 MHz.
This thermometry scheme can find applications in benchmarking and characterization of cryogenic microwave setups, temperature measurements in hybrid quantum systems, and quantum thermodynamics.
arXiv Detail & Related papers (2020-03-30T14:48:30Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.