STGAN: Spatial-temporal Graph Autoregression Network for Pavement Distress Deterioration Prediction
- URL: http://arxiv.org/abs/2503.01152v1
- Date: Mon, 03 Mar 2025 03:59:34 GMT
- Title: STGAN: Spatial-temporal Graph Autoregression Network for Pavement Distress Deterioration Prediction
- Authors: Shilin Tong, Difei Wu, Xiaona Liu, Le Zheng, Yuchuan Du, Difan Zou,
- Abstract summary: Real-world data on pavement distress is usually collected irregularly, resulting in uneven, asynchronous, and sparse spatial-temporal datasets.<n>We propose a novel graph neural network model designed for accurately predicting irregular pavement distress using complex spatial-temporal data.<n>Our findings contribute to promoting proactive road maintenance decision-making and enhancing road safety and resilience.
- Score: 18.17472488072826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pavement distress significantly compromises road integrity and poses risks to drivers. Accurate prediction of pavement distress deterioration is essential for effective road management, cost reduction in maintenance, and improvement of traffic safety. However, real-world data on pavement distress is usually collected irregularly, resulting in uneven, asynchronous, and sparse spatial-temporal datasets. This hinders the application of existing spatial-temporal models, such as DCRNN, since they are only applicable to regularly and synchronously collected data. To overcome these challenges, we propose the Spatial-Temporal Graph Autoregression Network (STGAN), a novel graph neural network model designed for accurately predicting irregular pavement distress deterioration using complex spatial-temporal data. Specifically, STGAN integrates the temporal domain into the spatial domain, creating a larger graph where nodes are represented by spatial-temporal tuples and edges are formed based on a similarity-based connection mechanism. Furthermore, based on the constructed spatiotemporal graph, we formulate pavement distress deterioration prediction as a graph autoregression task, i.e., the graph size increases incrementally and the prediction is performed sequentially. This is accomplished by a novel spatial-temporal attention mechanism deployed by STGAN. Utilizing the ConTrack dataset, which contains pavement distress records collected from different locations in Shanghai, we demonstrate the superior performance of STGAN in capturing spatial-temporal correlations and addressing the aforementioned challenges. Experimental results further show that STGAN outperforms baseline models, and ablation studies confirm the effectiveness of its novel modules. Our findings contribute to promoting proactive road maintenance decision-making and ultimately enhancing road safety and resilience.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - DST-TransitNet: A Dynamic Spatio-Temporal Deep Learning Model for Scalable and Efficient Network-Wide Prediction of Station-Level Transit Ridership [12.6020349733674]
This paper introduces DST-TransitNet, a hybrid Deep Learning model for system-wide ridership prediction.
It is tested on Bogota's BRT system data, with three distinct social scenarios.
It outperforms state-of-the-art models in precision, efficiency and robustness.
arXiv Detail & Related papers (2024-10-19T06:59:39Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
We propose TrendGCN to address the challenge of balancing dynamics and robustness.
Our model simultaneously incorporates spatial (node-wise) embeddings and temporal (time-wise) embeddings to account for heterogeneous space-and-time convolutions.
Compared with traditional approaches that handle step-wise predictive errors independently, our approach can produce more realistic and robust forecasts.
arXiv Detail & Related papers (2022-08-05T09:36:55Z) - Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow
Forecasting [6.867331860819595]
Traffic forecasting can be highly challenging due to complex spatial-temporal correlations and non-linear traffic patterns.
Existing works mostly model such spatial-temporal dependencies by considering spatial correlations and temporal correlations separately.
We propose to directly model the cross-spatial-temporal correlations on the spatial-temporal graph using local multi-head self-attentions.
arXiv Detail & Related papers (2022-07-09T19:21:00Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow
Forecasting [35.072979313851235]
spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads.
Existing frameworks typically utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations.
This paper proposes Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting.
arXiv Detail & Related papers (2020-12-15T14:03:17Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.