論文の概要: Unify and Anchor: A Context-Aware Transformer for Cross-Domain Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2503.01157v1
- Date: Mon, 03 Mar 2025 04:11:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:44.114387
- Title: Unify and Anchor: A Context-Aware Transformer for Cross-Domain Time Series Forecasting
- Title(参考訳): Unify and Anchor: クロスドメイン時系列予測のためのコンテキスト認識変換器
- Authors: Xiaobin Hong, Jiawen Zhang, Wenzhong Li, Sanglu Lu, Jia Li,
- Abstract要約: ドメイン間の時系列予測において,時間的パターンの複雑さと意味的ミスアライメントの2つの重要な課題を識別する。
本稿では,周波数成分を統一的な視点でアンタングルする"Unify and Anchor"転送パラダイムを提案する。
本稿では,構造化表現に時系列コーディネータを用いたTransformerベースのモデルであるContexTSTを紹介する。
- 参考スコア(独自算出の注目度): 26.59526791215
- License:
- Abstract: The rise of foundation models has revolutionized natural language processing and computer vision, yet their best practices to time series forecasting remains underexplored. Existing time series foundation models often adopt methodologies from these fields without addressing the unique characteristics of time series data. In this paper, we identify two key challenges in cross-domain time series forecasting: the complexity of temporal patterns and semantic misalignment. To tackle these issues, we propose the ``Unify and Anchor" transfer paradigm, which disentangles frequency components for a unified perspective and incorporates external context as domain anchors for guided adaptation. Based on this framework, we introduce ContexTST, a Transformer-based model that employs a time series coordinator for structured representation and the Transformer blocks with a context-informed mixture-of-experts mechanism for effective cross-domain generalization. Extensive experiments demonstrate that ContexTST advances state-of-the-art forecasting performance while achieving strong zero-shot transferability across diverse domains.
- Abstract(参考訳): 基礎モデルの台頭は自然言語処理とコンピュータビジョンに革命をもたらしたが、時系列予測のベストプラクティスはいまだ解明されていない。
既存の時系列基盤モデルは、時系列データのユニークな特徴に対処することなく、これらの分野から方法論を採用することが多い。
本稿では、時間的パターンの複雑さと意味的ミスアライメントという、ドメイン間時系列予測における2つの重要な課題を特定する。
このような問題に対処するために,周波数成分を統一的な視点で切り離し,外部コンテキストを誘導適応のためのドメインアンカーとして組み込んだ 'Unify and Anchor' 転送パラダイムを提案する。
本フレームワークをベースとしたContexTSTは,構造化表現のための時系列コーディネータと,効果的なクロスドメイン一般化のためのコンテキストインフォームド・ミックス・オブ・エキスパート機構を備えたTransformerブロックを用いた,Transformerベースのモデルである。
広範な実験により、ContexTSTは最先端の予測性能を向上し、多様な領域にわたる強力なゼロショット転送性を実現している。
関連論文リスト
- Federated Foundation Models on Heterogeneous Time Series [36.229082478423585]
主な目的は、Transformerアーキテクチャ上でモデルをトレーニングするためのトークンとして共有サブシーケンスを抽出するために、ドメイン間の時系列データセットを融合することである。
本稿では,時系列基礎モデルトレーニング(FFTS)における不均一性に対処する新しいフェデレーション学習手法を提案する。
新たに学習された時系列基礎モデルは、予測、計算、異常検出を含むクロスドメイン時系列解析タスクにおいて優れた一般化能力を達成する。
論文 参考訳(メタデータ) (2024-12-12T03:38:01Z) - Towards Generalisable Time Series Understanding Across Domains [10.350643783811174]
時系列の不均一性を扱うために特別に設計された新しい事前学習パラダイムを導入する。
本稿では、学習可能なドメインシグネチャ、二重マスキング戦略、正規化相互相関損失を持つトークンサを提案する。
私たちのコードと事前訓練されたウェイトはhttps://www.oetu.com/oetu/otis.comで公開されています。
論文 参考訳(メタデータ) (2024-10-09T17:09:30Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための因果変換器Timer-XLを提案する。
大規模な事前トレーニングに基づいて、Timer-XLは最先端のゼロショット性能を達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model [11.281386703572842]
TimeDiTは時間依存性学習と確率的サンプリングを組み合わせた拡散トランスフォーマーモデルである。
TimeDiTは、さまざまなタスクにわたるトレーニングと推論プロセスを調和させるために、統一的なマスキングメカニズムを採用している。
我々の体系的評価は、ゼロショット/ファインチューニングによる予測と計算という基本的なタスクにおいて、TimeDiTの有効性を示す。
論文 参考訳(メタデータ) (2024-09-03T22:31:57Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
この研究はドメイン境界を超越する統一モデルパラダイムを提唱する。
効果的なクロスドメインモデルを学ぶことは、以下の課題を提示します。
効果的なドメイン間時系列学習のためのUniTimeを提案する。
論文 参考訳(メタデータ) (2023-10-15T06:30:22Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Temporal Saliency Detection Towards Explainable Transformer-based
Timeseries Forecasting [3.046315755726937]
本稿では、注意機構を基盤として、マルチ水平時系列予測に適用する効果的なアプローチであるTSD(Temporal Saliency Detection)を提案する。
TSD手法は, 多重ヘッドを凝縮することにより, 多分解能パターンの多分解能解析を容易にし, 複雑な時系列データの予測を段階的に向上させる。
論文 参考訳(メタデータ) (2022-12-15T12:47:59Z) - Self-Supervised Time Series Representation Learning via Cross
Reconstruction Transformer [11.908755624411707]
既存のアプローチは主に対照的な学習フレームワークを活用し、類似したデータペアと異なるデータペアを理解するために自動的に学習する。
本稿では、上記の問題を統一的に解くために、CRT(Cross Reconstruction Transformer)を提案する。
CRTはクロスドメインドロップ・リコンストラクションタスクを通じて時系列表現学習を実現する。
論文 参考訳(メタデータ) (2022-05-20T02:15:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。