A Zero-Shot Learning Approach for Ephemeral Gully Detection from Remote Sensing using Vision Language Models
- URL: http://arxiv.org/abs/2503.01169v1
- Date: Mon, 03 Mar 2025 04:36:25 GMT
- Title: A Zero-Shot Learning Approach for Ephemeral Gully Detection from Remote Sensing using Vision Language Models
- Authors: Seyed Mohamad Ali Tousi, Ramy Farag, Jacket Demby's, Gbenga Omotara, John A. Lory, G. N. DeSouza,
- Abstract summary: Ephemeral gullies are a primary cause of soil erosion.<n>Prior research has not successfully addressed automated detection of ephemeral gullies from remotely sensed images.<n>We present and evaluate three successful pipelines for ephemeral gully detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ephemeral gullies are a primary cause of soil erosion and their reliable, accurate, and early detection will facilitate significant improvements in the sustainability of global agricultural systems. In our view, prior research has not successfully addressed automated detection of ephemeral gullies from remotely sensed images, so for the first time, we present and evaluate three successful pipelines for ephemeral gully detection. Our pipelines utilize remotely sensed images, acquired from specific agricultural areas over a period of time. The pipelines were tested with various choices of Visual Language Models (VLMs), and they classified the images based on the presence of ephemeral gullies with accuracy higher than 70% and a F1-score close to 80% for positive gully detection. Additionally, we developed the first public dataset for ephemeral gully detection, labeled by a team of soil- and plant-science experts. To evaluate the proposed pipelines, we employed a variety of zero-shot classification methods based on State-of-the-Art (SOTA) open-source Vision-Language Models (VLMs). In addition to that, we compare the same pipelines with a transfer learning approach. Extensive experiments were conducted to validate the detection pipelines and to analyze the impact of hyperparameter changes in their performance. The experimental results demonstrate that the proposed zero-shot classification pipelines are highly effective in detecting ephemeral gullies in a scenario where classification datasets are scarce.
Related papers
- Purifying, Labeling, and Utilizing: A High-Quality Pipeline for Small Object Detection [83.90563802153707]
PLUSNet is a high-quality Small object detection framework.
It comprises three components: the Hierarchical Feature (HFP) framework for purifying upstream features, the Multiple Criteria Label Assignment (MCLA) for improving the quality of midstream training samples, and the Frequency Decoupled Head (FDHead) for more effectively exploiting information to accomplish downstream tasks.
arXiv Detail & Related papers (2025-04-29T10:11:03Z) - Fuzzy Granule Density-Based Outlier Detection with Multi-Scale Granular Balls [65.44462297594308]
Outlier detection refers to the identification of anomalous samples that deviate significantly from the distribution of normal data.<n>Most unsupervised outlier detection methods are carefully designed to detect specified outliers.<n>We propose a fuzzy rough sets-based multi-scale outlier detection method to identify various types of outliers.
arXiv Detail & Related papers (2025-01-06T12:35:51Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Vision-based Xylem Wetness Classification in Stem Water Potential Determination [8.597874067545233]
This work focused on automating stem detection and xylem wetness classification using the Scholander Pressure Chamber.
The aim was to refine stem detection and develop computer-vision-based methods to better classify water emergence at the xylem.
Learning-based stem detection via YOLOv8n combined with ResNet50-based classification achieved a Top-1 accuracy of 80.98%.
arXiv Detail & Related papers (2024-09-24T19:24:04Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Detecting Out-Of-Distribution Earth Observation Images with Diffusion Models [2.1178416840822027]
We show that the reconstruction error of diffusion models can effectively serve as unsupervised out-of-distribution detectors for remote sensing images.
We introduce ODEED, a novel reconstruction-based scorer using the probability-flow ODE of diffusion models.
We aim to pave the way towards better use of generative models for anomaly detection in remote sensing.
arXiv Detail & Related papers (2024-04-19T07:07:36Z) - Nearest Neighbor Guidance for Out-of-Distribution Detection [18.851275688720108]
We propose Nearest Neighbor Guidance (NNGuide) for detecting out-of-distribution (OOD) samples.
NNGuide reduces the overconfidence of OOD samples while preserving the fine-grained capability of the classifier-based score.
Our results demonstrate that NNGuide provides a significant performance improvement on the base detection scores.
arXiv Detail & Related papers (2023-09-26T12:40:35Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Hyperspectral Remote Sensing Benchmark Database for Oil Spill Detection
with an Isolation Forest-Guided Unsupervised Detector [13.739881592455044]
Oil spill detection has attracted increasing attention in recent years since marine oil spill accidents severely affect environments, natural resources, and the lives of coastal inhabitants.
Most of the existing approaches are based on supervised and semi-supervised frameworks to detect oil spills from hyperspectral images (HSIs)
In this study, we make the first attempt to develop an unsupervised oil spill detection method based on isolation forest for HSIs.
arXiv Detail & Related papers (2022-09-28T02:26:42Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - DDPM-CD: Denoising Diffusion Probabilistic Models as Feature Extractors
for Change Detection [31.125812018296127]
We introduce a novel approach for change detection by pre-training a Deno Diffusionising Probabilistic Model (DDPM)
DDPM learns the training data distribution by gradually converting training images into a Gaussian distribution using a Markov chain.
During inference (i.e., sampling), they can generate a diverse set of samples closer to the training distribution.
Experiments conducted on the LEVIR-CD, WHU-CD, DSIFN-CD, and CDD datasets demonstrate that the proposed DDPM-CD method significantly outperforms the existing change detection methods in terms of F1 score, I
arXiv Detail & Related papers (2022-06-23T17:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.