Towards net-zero manufacturing: carbon-aware scheduling for GHG emissions reduction
- URL: http://arxiv.org/abs/2503.01325v1
- Date: Mon, 03 Mar 2025 09:06:54 GMT
- Title: Towards net-zero manufacturing: carbon-aware scheduling for GHG emissions reduction
- Authors: Andrea Mencaroni, Pieter Leyman, Birger Raa, Stijn De Vuyst, Dieter Claeys,
- Abstract summary: Scope 2 emissions are the indirect emissions related to the production and consumption of grid electricity.<n>This study introduces a carbon-aware permutation flow-shop scheduling model designed to reduce scope 2 emissions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Detailed scheduling has traditionally been optimized for the reduction of makespan and manufacturing costs. However, growing awareness of environmental concerns and increasingly stringent regulations are pushing manufacturing towards reducing the carbon footprint of its operations. Scope 2 emissions, which are the indirect emissions related to the production and consumption of grid electricity, are in fact estimated to be responsible for more than one-third of the global GHG emissions. In this context, carbon-aware scheduling can serve as a powerful way to reduce manufacturing's carbon footprint by considering the time-dependent carbon intensity of the grid and the availability of on-site renewable electricity. This study introduces a carbon-aware permutation flow-shop scheduling model designed to reduce scope 2 emissions. The model is formulated as a mixed-integer linear problem, taking into account the forecasted grid generation mix and available on-site renewable electricity, along with the set of jobs to be scheduled and their corresponding power requirements. The objective is to find an optimal day-ahead schedule that minimizes scope 2 emissions. The problem is addressed using a dedicated memetic algorithm, combining evolutionary strategy and local search. Results from computational experiments confirm that by considering the dynamic carbon intensity of the grid and on-site renewable electricity availability, substantial reductions in carbon emissions can be achieved.
Related papers
- Improving Power Plant CO2 Emission Estimation with Deep Learning and Satellite/Simulated Data [0.0]
CO2 emissions from power plants, as significant super emitters, substantially contribute to global warming.<n>This study addresses challenges by expanding the available dataset through the integration of NO2 data from Sentinel-5P, generating continuous XCO2 maps, and incorporating real satellite observations from OCO-2/3 for over 71 power plants in data-scarce regions.
arXiv Detail & Related papers (2025-02-04T08:05:15Z) - Engineering Carbon Credits Towards A Responsible FinTech Era: The Practices, Implications, and Future [22.059216644807282]
Carbon credits have emerged as a key tool for mitigating environmental damage and helping organizations manage their carbon footprint.
This study explores engineering practices and solutions to enhance carbon emission management.
arXiv Detail & Related papers (2024-12-22T05:48:02Z) - The Sunk Carbon Fallacy: Rethinking Carbon Footprint Metrics for Effective Carbon-Aware Scheduling [2.562727244613512]
We evaluate carbon-aware job scheduling and placement on a given set of servers for a number of carbon accounting metrics.
We study the factors that affect the added carbon cost of such suboptimal decision-making.
arXiv Detail & Related papers (2024-10-19T12:23:59Z) - Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
A carbon market is a market-based tool that incentivizes economic agents to align individual profits with the global utility.
We propose an adaptive mechanism design framework, simulating the market using hierarchical, model-free multi-agent reinforcement learning (MARL)
Numerical results show MARL enables government agents to balance productivity, equality, and carbon emissions.
arXiv Detail & Related papers (2024-06-12T05:08:51Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Efficient Strategies on Supply Chain Network Optimization for Industrial Carbon Emission Reduction [0.0]
This study investigates the efficient strategies for supply chain network optimization, specifically aimed at reducing industrial carbon emissions.
We introduce Adaptive Carbon Emissions Indexing (ACEI), utilizing real-time carbon emissions data to drive instantaneous adjustments in supply chain operations.
arXiv Detail & Related papers (2024-04-17T14:53:55Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - Optimizing carbon tax for decentralized electricity markets using an
agent-based model [69.3939291118954]
Averting the effects of anthropogenic climate change requires a transition from fossil fuels to low-carbon technology.
Carbon taxes have been shown to be an efficient way to aid in this transition.
We use the NSGA-II genetic algorithm to minimize average electricity price and relative carbon intensity of the electricity mix.
arXiv Detail & Related papers (2020-05-28T06:54:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.