論文の概要: The Road Less Traveled: Investigating Robustness and Explainability in CNN Malware Detection
- arxiv url: http://arxiv.org/abs/2503.01391v1
- Date: Mon, 03 Mar 2025 10:42:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:12:50.756973
- Title: The Road Less Traveled: Investigating Robustness and Explainability in CNN Malware Detection
- Title(参考訳): CNNマルウェア検出におけるロバスト性および説明可能性の検討
- Authors: Matteo Brosolo, Vinod Puthuvath, Mauro Conti,
- Abstract要約: マルウェア分類におけるCNNの振る舞いをよりよく理解するために,定量的解析と説明可能性ツールを統合した。
難解化技術は, モデル精度を最大50%低減し, 頑健性を高めるための緩和戦略を提案する。
本研究は,ディープラーニングを用いた侵入検知システムの解釈可能性とレジリエンスの向上に寄与する。
- 参考スコア(独自算出の注目度): 15.43868945929965
- License:
- Abstract: Machine learning has become a key tool in cybersecurity, improving both attack strategies and defense mechanisms. Deep learning models, particularly Convolutional Neural Networks (CNNs), have demonstrated high accuracy in detecting malware images generated from binary data. However, the decision-making process of these black-box models remains difficult to interpret. This study addresses this challenge by integrating quantitative analysis with explainability tools such as Occlusion Maps, HiResCAM, and SHAP to better understand CNN behavior in malware classification. We further demonstrate that obfuscation techniques can reduce model accuracy by up to 50%, and propose a mitigation strategy to enhance robustness. Additionally, we analyze heatmaps from multiple tests and outline a methodology for identification of artifacts, aiding researchers in conducting detailed manual investigations. This work contributes to improving the interpretability and resilience of deep learning-based intrusion detection systems
- Abstract(参考訳): 機械学習はサイバーセキュリティの重要なツールとなり、攻撃戦略と防御メカニズムの両方を改善している。
ディープラーニングモデル、特に畳み込みニューラルネットワーク(CNN)は、バイナリデータから生成されたマルウェアイメージを高精度に検出することを示した。
しかしながら、これらのブラックボックスモデルの意思決定プロセスは解釈が難しいままである。
本研究は, Occlusion Maps, HiResCAM, SHAPなどの説明可能性ツールと定量的解析を統合し, マルウェア分類におけるCNNの振る舞いをよりよく理解することで, この課題に対処する。
さらに,難解化技術はモデル精度を最大50%削減できることを示すとともに,ロバスト性を高めるための緩和戦略を提案する。
さらに、複数のテストから熱マップを分析し、アーティファクトの特定のための方法論を概説し、研究者が詳細な手作業による調査を行うのを助ける。
本研究は,ディープラーニングを用いた侵入検知システムの解釈可能性とレジリエンスの向上に寄与する。
関連論文リスト
- Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
本研究では,機械学習技術を用いたマルウェア検出の徹底的な検討を行う。
その目的は、脅威をより効果的に識別し緩和することで、サイバーセキュリティの能力を向上させることである。
論文 参考訳(メタデータ) (2024-03-04T17:22:43Z) - Instance Attack:An Explanation-based Vulnerability Analysis Framework
Against DNNs for Malware Detection [0.0]
本稿では,インスタンスベースの攻撃の概念を提案する。
我々の方式は解釈可能であり、ブラックボックス環境でも機能する。
提案手法はブラックボックス設定で動作し,その結果をドメイン知識で検証することができる。
論文 参考訳(メタデータ) (2022-09-06T12:41:20Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - A Comparative Analysis of Machine Learning Techniques for IoT Intrusion
Detection [0.0]
本稿では,IoT-23データセットの9つのマルウェアキャプチャにおける教師付き・教師なし・強化学習手法の比較分析を行った。
SVM, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), isolation Forest (iForest), Local Outlier Factor (LOF), Deep Reinforcement Learning (DRL) model based on a Double Deep Q-Network (DDQN)。
論文 参考訳(メタデータ) (2021-11-25T16:14:54Z) - A comparative study of neural network techniques for automatic software
vulnerability detection [9.443081849443184]
ソフトウェア脆弱性を検出する最も一般的な方法は静的解析である。
一部の研究者は、検出の知性を改善するために自動特徴抽出機能を持つニューラルネットワークの使用を提案している。
2つの典型的なニューラルネットワークの性能をテストするための広範な実験を実施しました。
論文 参考訳(メタデータ) (2021-04-29T01:47:30Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。