論文の概要: Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection
- arxiv url: http://arxiv.org/abs/2403.02232v2
- Date: Mon, 25 Mar 2024 21:33:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 21:44:06.956062
- Title: Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection
- Title(参考訳): マルウェア検出における機械学習によるMal-API-2019データセットの総合評価
- Authors: Zhenglin Li, Haibei Zhu, Houze Liu, Jintong Song, Qishuo Cheng,
- Abstract要約: 本研究では,機械学習技術を用いたマルウェア検出の徹底的な検討を行う。
その目的は、脅威をより効果的に識別し緩和することで、サイバーセキュリティの能力を向上させることである。
- 参考スコア(独自算出の注目度): 0.5475886285082937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study conducts a thorough examination of malware detection using machine learning techniques, focusing on the evaluation of various classification models using the Mal-API-2019 dataset. The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively. Both ensemble and non-ensemble machine learning methods, such as Random Forest, XGBoost, K Nearest Neighbor (KNN), and Neural Networks, are explored. Special emphasis is placed on the importance of data pre-processing techniques, particularly TF-IDF representation and Principal Component Analysis, in improving model performance. Results indicate that ensemble methods, particularly Random Forest and XGBoost, exhibit superior accuracy, precision, and recall compared to others, highlighting their effectiveness in malware detection. The paper also discusses limitations and potential future directions, emphasizing the need for continuous adaptation to address the evolving nature of malware. This research contributes to ongoing discussions in cybersecurity and provides practical insights for developing more robust malware detection systems in the digital era.
- Abstract(参考訳): 本研究では,Mal-API-2019データセットを用いた各種分類モデルの評価に焦点をあて,機械学習を用いたマルウェア検出の徹底的な検討を行う。
その目的は、脅威をより効果的に識別し緩和することで、サイバーセキュリティの能力を向上させることである。
ランダムフォレスト(Random Forest)、XGBoost(XGBoost)、K Nearest Neighbor(KNN)、ニューラルネットワーク(Neural Networks)などのアンサンブルおよび非アンサンブル機械学習手法について検討した。
特に,データ前処理技術,特にTF-IDF表現と主成分分析が,モデル性能の向上に重要視されている。
その結果,アンサンブル法,特にランダムフォレストとXGBoostは,他の方法に比べて精度,精度,リコールが優れており,マルウェア検出の有効性が示された。
また,マルウェアの進化する性質に対処する継続的適応の必要性を強調し,限界や今後の方向性についても論じる。
この研究はサイバーセキュリティに関する継続的な議論に寄与し、デジタル時代のより堅牢なマルウェア検出システムを開発するための実践的な洞察を提供する。
関連論文リスト
- Adversarial Challenges in Network Intrusion Detection Systems: Research Insights and Future Prospects [0.33554367023486936]
本稿では,機械学習を用いたネットワーク侵入検知システム(NIDS)の総合的なレビューを行う。
NIDSにおける既存の研究を批判的に検討し、重要なトレンド、強み、限界を強調した。
我々は、この分野における新たな課題について議論し、より堅牢でレジリエントなNIDSの開発に向けた洞察を提供する。
論文 参考訳(メタデータ) (2024-09-27T13:27:29Z) - Leveraging LSTM and GAN for Modern Malware Detection [0.4799822253865054]
本稿では,マルウェア検出精度と速度を向上するために,ディープラーニングモデル,LSTMネットワーク,GAN分類器の利用を提案する。
研究結果は98%の精度で行われ、ディープラーニングの効率が積極的なサイバーセキュリティ防衛において決定的な役割を担っていることを示している。
論文 参考訳(メタデータ) (2024-05-07T14:57:24Z) - Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets [5.198311758274061]
我々は、敵に対する具体的な保護を確保するのに役立つ新しい検証ドメインを提案する。
マルウェア分類と2種類の共通マルウェアデータセットについて述べる。
マルウェア分類の検証の改善と改善に必要な課題と今後の考察について概説する。
論文 参考訳(メタデータ) (2024-04-08T17:37:22Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Enhancing Malware Detection by Integrating Machine Learning with Cuckoo
Sandbox [0.0]
本研究の目的は,APIコールシーケンスを含むデータセットから抽出されたマルウェアを分類し,同定することである。
ディープラーニングと機械学習の両方のアルゴリズムは、極めて高いレベルの精度を実現し、特定のケースでは最大99%に達する。
論文 参考訳(メタデータ) (2023-11-07T22:33:17Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Robustness Evaluation of Deep Unsupervised Learning Algorithms for
Intrusion Detection Systems [0.0]
本稿では, 汚染データに対する侵入検出のための6つの最新のディープラーニングアルゴリズムの堅牢性を評価する。
本研究で用いた最先端のアルゴリズムは,データ汚染に敏感であり,データ摂動に対する自己防衛の重要性を明らかにしている。
論文 参考訳(メタデータ) (2022-06-25T02:28:39Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
一般的な評価フレームワークを用いて,Androidのマルウェア検出に関する10の研究成果を分析した。
データセットの作成やデザイナの設計に考慮しない場合、トレーニングされたMLモデルに大きく影響する5つの要因を特定します。
その結果,MLに基づく検出器は楽観的に評価され,良好な結果が得られた。
論文 参考訳(メタデータ) (2022-05-25T08:28:08Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。