論文の概要: Compare different SG-Schemes based on large least square problems
- arxiv url: http://arxiv.org/abs/2503.01507v2
- Date: Tue, 04 Mar 2025 08:47:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:57.278088
- Title: Compare different SG-Schemes based on large least square problems
- Title(参考訳): 最小二乗問題に基づく異なるSG-Schemesの比較
- Authors: Ramkrishna Acharya,
- Abstract要約: 本研究は、最小二乗問題に基づいて、一般的な勾配に基づくスキームをレビューする。
この作業の結果を生み出したコードはhttps://github.com/q-viper/gradients-based-methods-on-large-least-squareで公開されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study reviews popular stochastic gradient-based schemes based on large least-square problems. These schemes, often called optimizers in machine learning, play a crucial role in finding better model parameters. Hence, this study focuses on viewing such optimizers with different hyper-parameters and analyzing them based on least square problems. Codes that produced results in this work are available on https://github.com/q-viper/gradients-based-methods-on-large-least-square.
- Abstract(参考訳): 本研究は,最小二乗問題に基づく確率勾配に基づく一般的なスキームをレビューする。
これらのスキームは機械学習においてオプティマイザと呼ばれ、より良いモデルパラメータを見つける上で重要な役割を果たす。
そこで本研究では, パラメータの異なる最適化器の視認と, 最小二乗問題に基づく解析に焦点をあてる。
この作業の結果を生み出したコードはhttps://github.com/q-viper/gradients-based-methods-on-large-least-squareで公開されている。
関連論文リスト
- UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
最適化プログラミング(SP)、最適制御(SOC)、決定プロセス(MDP)に焦点を当てる。
凸多段マルコフ問題の解決の最近の進歩は、動的プログラミング方程式のコスト対ゴー関数の切断面近似に基づいている。
切削平面型法は多段階問題を多段階的に扱えるが、状態(決定)変数は比較的少ない。
論文 参考訳(メタデータ) (2023-03-28T01:30:40Z) - Stochastic Gradient Methods with Preconditioned Updates [47.23741709751474]
このような問題に対するアルゴリズムはいくつかあるが、既存の手法は、スケールが悪く、あるいは条件が悪ければ、しばしばうまく機能しない。
ここではハッチンソンの対角ヘッセン近似のアプローチに基づく前提条件を含む。
我々は滑らかさとPL条件が仮定されるときの収束性を証明する。
論文 参考訳(メタデータ) (2022-06-01T07:38:08Z) - On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning [0.0]
深部記憶ネットワークのための準ニュートン学習アルゴリズムの動作について検討する。
準ニュートンは効率が良く、よく知られたAdamの1次実行よりも性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-05-18T20:53:58Z) - Sliced gradient-enhanced Kriging for high-dimensional function
approximation [2.8228516010000617]
Gradient-enhanced Kriging (GE-Kriging)は、高価な計算モデルを近似するために確立されたサロゲートモデリング技術である。
固有相関行列のサイズのため、高次元問題に対して実用的でない傾向にある。
SGE-Kriging (Sliced GE-Kriging, SGE-Kriging) と呼ばれる新しい手法を開発し, 相関行列のサイズを小さくする。
その結果,SGE-Krigingモデルでは,標準モデルに匹敵する精度と堅牢性を特徴とするが,トレーニングコストの低減が図られた。
論文 参考訳(メタデータ) (2022-04-05T07:27:14Z) - Hybrid neural network reduced order modelling for turbulent flows with
geometric parameters [0.0]
本稿では,幾何的パラメータ化不可能な乱流Navier-Stokes問題の解法として,古典的ガレルキン射影法とデータ駆動法を併用して,多目的かつ高精度なアルゴリズムを提案する。
本手法の有効性は,古典学のバックステップ問題と形状変形Ahmed体応用の2つの異なるケースで実証された。
論文 参考訳(メタデータ) (2021-07-20T16:06:18Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - Computing stable resultant-based minimal solvers by hiding a variable [20.402488757146692]
コンピュータビジョンアプリケーションは、最小数の入力データ測定からカメラ幾何学を頑健に推定する必要がある。
本稿では,1つの変数を隠蔽することにより,方程式のスパース系を解くための興味深い代替スパース法について検討する。
研究結果から,提案手法は現状のGr"オブザーバベースの解法よりも安定な解法に導かれることが示された。
論文 参考訳(メタデータ) (2020-07-17T07:40:10Z) - Marginal likelihood computation for model selection and hypothesis
testing: an extensive review [66.37504201165159]
この記事では、このトピックの最先端に関する総合的な研究について紹介する。
さまざまなテクニックの制限、メリット、コネクション、差異を強調します。
また、不適切な事前利用の問題や解決法についても述べる。
論文 参考訳(メタデータ) (2020-05-17T18:31:58Z) - Learning to Select Base Classes for Few-shot Classification [96.92372639495551]
我々は、数ショットモデルの一般化性能を示す指標として、類似度比を用いる。
次に、類似度比に対する部分モジュラー最適化問題として基底クラス選択問題を定式化する。
論文 参考訳(メタデータ) (2020-04-01T09:55:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。