論文の概要: R2VF: A Two-Step Regularization Algorithm to Cluster Categories in GLMs
- arxiv url: http://arxiv.org/abs/2503.01521v1
- Date: Mon, 03 Mar 2025 13:31:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:35.789401
- Title: R2VF: A Two-Step Regularization Algorithm to Cluster Categories in GLMs
- Title(参考訳): R2VF:GLM内のカテゴリをクラスタ化するための2ステップの正規化アルゴリズム
- Authors: Yuval Ben Dror,
- Abstract要約: 本稿では、一般化線形モデル(GLMs)において、名詞と順序のカテゴリーを効率的に融合する2段階の方法であるR2VF(R2VF)について紹介する。
R2VFは、最初に規則化された回帰を通じて、名目上の特徴を順序付きフレームワークに変換することで、モデルの複雑さと解釈可能性のバランスを取る。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Over recent decades, extensive research has aimed to overcome the restrictive underlying assumptions required for a Generalized Linear Model to generate accurate and meaningful predictions. These efforts include regularizing coefficients, selecting features, and clustering ordinal categories, among other approaches. Despite these advances, efficiently clustering nominal categories in GLMs without incurring high computational costs remains a challenge. This paper introduces Ranking to Variable Fusion (R2VF), a two-step method designed to efficiently fuse nominal and ordinal categories in GLMs. By first transforming nominal features into an ordinal framework via regularized regression and then applying variable fusion, R2VF strikes a balance between model complexity and interpretability. We demonstrate the effectiveness of R2VF through comparisons with other methods, highlighting its performance in addressing overfitting and finding a proper set of covariates.
- Abstract(参考訳): 近年では、一般化線形モデルが正確で有意義な予測を生成するために必要な制約的な前提を克服する研究が盛んに行われている。
これらの取り組みには、係数の正則化、特徴の選択、クラスタリング順序カテゴリーなどが含まれる。
これらの進歩にもかかわらず、高い計算コストを伴わずに、GLMの命名カテゴリーを効率的にクラスタリングすることは、依然として課題である。
本稿では,GLMにおける名詞と順序のカテゴリーを効率的に融合する2段階法であるR2VFについて紹介する。
R2VFは、まず正規化回帰を通じて名目上の特徴を順序付きフレームワークに変換し、次に変数融合を適用することで、モデルの複雑さと解釈可能性のバランスをとる。
本稿では,R2VF の有効性を他の手法との比較により示し,オーバーフィッティングに対処し,適切な共変量を求める際の性能を強調した。
関連論文リスト
- Category-Adaptive Cross-Modal Semantic Refinement and Transfer for Open-Vocabulary Multi-Label Recognition [59.203152078315235]
本稿では,カテゴリ適応型クロスモーダル・セマンティック・リファインメント・アンド・トランスファー(C$2$SRT)フレームワークを提案する。
提案するフレームワークは,2つの相補的モジュール,すなわち,カテゴリ内セマンティックリファインメント(ISR)モジュールと,カテゴリ間セマンティックトランスファー(IST)モジュールから構成される。
OV-MLRベンチマークの実験は、提案されたC$2$SRTフレームワークが現在の最先端アルゴリズムより優れていることを明らかに示している。
論文 参考訳(メタデータ) (2024-12-09T04:00:18Z) - A Fresh Look at Generalized Category Discovery through Non-negative Matrix Factorization [83.12938977698988]
Generalized Category Discovery (GCD) は、ラベル付きベースデータを用いて、ベース画像と新規画像の両方を分類することを目的としている。
現在のアプローチでは、コサイン類似性に基づく共起行列 $barA$ の固有の最適化に不適切に対処している。
本稿では,これらの欠陥に対処するNon-Negative Generalized Category Discovery (NN-GCD) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T07:24:11Z) - Boosting Few-Shot Learning via Attentive Feature Regularization [35.4031662352264]
多様体正規化に基づくFSL(Few-shot Learning)は,限られたトレーニングサンプルを用いた新規物体の認識能力の向上を目的としている。
本稿では,特徴適応性と識別性の向上を目的とした特徴正規化(AFR)を提案する。
論文 参考訳(メタデータ) (2024-03-23T14:36:48Z) - "Clustering and Conquer" Procedures for Parallel Large-Scale Ranking and Selection [0.0]
並列コンピューティングにおいてよく使われる「分割と征服」フレームワークを,相関に基づくクラスタリングのステップを追加して修正する。
この一見単純な修正は、$mathcalO(p)$サンプルの複雑さの減少率を達成することができる。
ニューラルネットワーク探索のような大規模AIアプリケーションでは,本手法は優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-03T15:56:03Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
従来の検出器は、分類バイアスによる長期データを扱う際の性能劣化に悩まされる。
本稿では,カテゴリ分布の格差に起因する不平等の適応的是正を可能にする,BAlanced CLassification (BACL) と呼ばれる統一フレームワークを提案する。
BACLは、さまざまなバックボーンとアーキテクチャを持つさまざまなデータセット間で、一貫してパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-08-04T09:11:07Z) - Cluster Regularization via a Hierarchical Feature Regression [0.0]
本稿では,階層的特徴回帰(HFR)という新しいクラスタベース正規化を提案する。
機械学習とグラフ理論の領域からの洞察を動員し、予測セットの教師付き階層表現に沿ってパラメータを推定する。
経済成長予測への応用は、実証的な環境でのHFRの有効性を示すために用いられる。
論文 参考訳(メタデータ) (2021-07-10T13:03:01Z) - Gaussian Process Models with Low-Rank Correlation Matrices for Both
Continuous and Categorical Inputs [0.0]
混合連続および分類ガウス過程モデルにおけるクロス相関行列の低ランク近似を用いた手法を提案する。
低ランク相関(LRC)は、近似の適切なランクを選択することで、問題のパラメータの数に柔軟に適応する能力を提供する。
論文 参考訳(メタデータ) (2020-10-06T09:38:35Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
我々は,単純なBiLSTMモデルであっても,クロスエントロピー損失でトレーニングした場合に,競争的な結果が得られるようなトレーニング戦略を開発する。
いくつかのベンチマークデータセット上で,テキスト分類タスクの最先端結果について報告する。
論文 参考訳(メタデータ) (2020-09-08T21:55:22Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z) - Adaptive Correlated Monte Carlo for Contextual Categorical Sequence
Generation [77.7420231319632]
我々は,モンテカルロ (MC) ロールアウトの集合を分散制御のために評価する政策勾配推定器に,カテゴリー列の文脈的生成を適用する。
また,二分木ソフトマックスモデルに相関したMCロールアウトを用いることで,大語彙シナリオにおける高生成コストを低減できることを示す。
論文 参考訳(メタデータ) (2019-12-31T03:01:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。