AI-Driven Relocation Tracking in Dynamic Kitchen Environments
- URL: http://arxiv.org/abs/2503.01547v1
- Date: Mon, 03 Mar 2025 13:53:46 GMT
- Title: AI-Driven Relocation Tracking in Dynamic Kitchen Environments
- Authors: Arash Nasr Esfahani, Hamed Hosseini, Mehdi Tale Masouleh, Ahmad Kalhor, Hedieh Sajedi,
- Abstract summary: This study focuses on developing an intelligent algorithm which can navigate a robot through a kitchen, recognizing objects, and tracking their relocation.<n>The kitchen was chosen as the testing ground due to its dynamic nature as objects are frequently moved, rearranged and replaced.<n>A novel method was developed, a frame-scoring algorithm which calculates a score for each object based on its location and introducing features within all frames.
- Score: 6.00017326982492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As smart homes become more prevalent in daily life, the ability to understand dynamic environments is essential which is increasingly dependent on AI systems. This study focuses on developing an intelligent algorithm which can navigate a robot through a kitchen, recognizing objects, and tracking their relocation. The kitchen was chosen as the testing ground due to its dynamic nature as objects are frequently moved, rearranged and replaced. Various techniques, such as SLAM feature-based tracking and deep learning-based object detection (e.g., Faster R-CNN), are commonly used for object tracking. Additionally, methods such as optical flow analysis and 3D reconstruction have also been used to track the relocation of objects. These approaches often face challenges when it comes to problems such as lighting variations and partial occlusions, where parts of the object are hidden in some frames but visible in others. The proposed method in this study leverages the YOLOv5 architecture, initialized with pre-trained weights and subsequently fine-tuned on a custom dataset. A novel method was developed, introducing a frame-scoring algorithm which calculates a score for each object based on its location and features within all frames. This scoring approach helps to identify changes by determining the best-associated frame for each object and comparing the results in each scene, overcoming limitations seen in other methods while maintaining simplicity in design. The experimental results demonstrate an accuracy of 97.72%, a precision of 95.83% and a recall of 96.84% for this algorithm, which highlights the efficacy of the model in detecting spatial changes.
Related papers
- Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.<n>Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.<n>We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - Real-Time Object Detection in Occluded Environment with Background
Cluttering Effects Using Deep Learning [0.8192907805418583]
We concentrate on deep learning models for real-time detection of cars and tanks in an occluded environment with a cluttered background.
The developed method makes the custom dataset and employs a preprocessing technique to clean the noisy dataset.
The accuracy and frame per second of the SSD-Mobilenet v2 model are higher than YOLO V3 and YOLO V4.
arXiv Detail & Related papers (2024-01-02T01:30:03Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
We propose to model Dynamic Objects in RecurrenT (DORT) to tackle this problem.
DORT extracts object-wise local volumes for motion estimation that also alleviates the heavy computational burden.
It is flexible and practical that can be plugged into most camera-based 3D object detectors.
arXiv Detail & Related papers (2023-03-29T12:33:55Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
This article proposes methods for improving object detection accuracy from the perspective of changing receptive fields.
The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers.
The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters.
arXiv Detail & Related papers (2023-03-15T23:59:18Z) - A Contextual Bandit Approach for Learning to Plan in Environments with
Probabilistic Goal Configurations [20.15854546504947]
We propose a modular framework for object-nav that is able to efficiently search indoor environments for not just static objects but also movable objects.
Our contextual-bandit agent efficiently explores the environment by showing optimism in the face of uncertainty.
We evaluate our algorithms in two simulated environments and a real-world setting, to demonstrate high sample efficiency and reliability.
arXiv Detail & Related papers (2022-11-29T15:48:54Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning [0.12599533416395764]
We describe a novel architecture that enables multiple low-compute NAO robots to perform real-time detection, recognition and localization of objects in its camera view.
The proposed algorithm for object detection and localization is an empirical modification of YOLOv3, based on indoor experiments in multiple scenarios.
The architecture also comprises of an effective end-to-end pipeline to feed the real-time frames from the camera feed to the neural net and use its results for guiding the robot.
arXiv Detail & Related papers (2020-01-20T05:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.