論文の概要: Meta Learning-Driven Iterative Refinement for Robust Anomaly Detection in Industrial Inspection
- arxiv url: http://arxiv.org/abs/2503.01569v1
- Date: Mon, 03 Mar 2025 14:11:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:10.858754
- Title: Meta Learning-Driven Iterative Refinement for Robust Anomaly Detection in Industrial Inspection
- Title(参考訳): 産業検査におけるロバスト異常検出のためのメタ学習駆動反復補正
- Authors: Muhammad Aqeel, Shakiba Sharifi, Marco Cristani, Francesco Setti,
- Abstract要約: 本稿では,メタ学習アプローチの適応能力を活用して,ノイズの多い学習データを特定し,拒否し,学習プロセスを改善することを提案する。
本モデルでは, モデル非依存メタ学習(MAML)と, 適応性と堅牢性を高めるために, 異種間距離の拒絶方式による反復的洗練プロセスを採用する。
- 参考スコア(独自算出の注目度): 9.132399905884364
- License:
- Abstract: This study investigates the performance of robust anomaly detection models in industrial inspection, focusing particularly on their ability to handle noisy data. We propose to leverage the adaptation ability of meta learning approaches to identify and reject noisy training data to improve the learning process. In our model, we employ Model Agnostic Meta Learning (MAML) and an iterative refinement process through an Inter-Quartile Range rejection scheme to enhance their adaptability and robustness. This approach significantly improves the models capability to distinguish between normal and defective conditions. Our results of experiments conducted on well known MVTec and KSDD2 datasets demonstrate that the proposed method not only excels in environments with substantial noise but can also contribute in case of a clear training set, isolating those samples that are relatively out of distribution, thus offering significant improvements over traditional models.
- Abstract(参考訳): 本研究では, 産業検査におけるロバストな異常検出モデルの性能について検討し, ノイズデータ処理能力に着目した。
本稿では,メタ学習アプローチの適応能力を活用して,ノイズの多い学習データを特定し,拒否し,学習プロセスを改善することを提案する。
本モデルでは, モデル非依存メタ学習(MAML)と, 適応性と堅牢性を高めるために, 異種間距離の拒絶方式による反復的洗練プロセスを採用する。
このアプローチは、正常条件と欠陥条件を区別するモデル能力を大幅に改善する。
MVTec と KSDD2 データセットを用いた実験の結果,提案手法はノイズの多い環境に留まらず,明確なトレーニングセットの場合にも有効であることを示す。
関連論文リスト
- Towards Building a Robust Knowledge Intensive Question Answering Model with Large Language Models [4.4849006637642805]
抽出された情報におけるノイズや誤差の存在は、LLMの堅牢性に課題をもたらす。
ノイズの多い外部情報によるモデル精度低下の問題に対処するため,データ拡張に基づく微調整手法を提案する。
我々は既存のLCMと我々のアプローチの両方で実験を行い、その結果をGPT-4で評価した。
論文 参考訳(メタデータ) (2024-09-09T07:32:30Z) - Relation Modeling and Distillation for Learning with Noisy Labels [4.556974104115929]
本稿では,自己教師型学習を通して,サンプル間の関係をモデル化する関係モデリングと蒸留の枠組みを提案する。
提案手法は,ノイズの多いデータに対する識別表現を学習し,既存の手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2024-05-30T01:47:27Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - DDPM-MoCo: Advancing Industrial Surface Defect Generation and Detection with Generative and Contrastive Learning [3.789219860006095]
これらの問題に対処するためにDDPM-MoCoという新しい欠陥発生手法を提案する。
まず,Denoising Diffusion Probabilistic Model (DDPM) を用いて,高品質な欠陥データサンプルを生成する。
第2に、教師なし学習モメンタムコントラストモデル(MoCo)と拡張バッチコントラスト損失関数を用いて、ラベルなしデータ上でモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-05-09T17:17:53Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - Analyze the Robustness of Classifiers under Label Noise [5.708964539699851]
教師付き学習におけるラベルノイズは、誤ったラベルまたは不正確なラベルによって特徴づけられ、モデル性能を著しく損なう。
本研究は, ラベルノイズが実用的応用に与える影響について, ますます関連する問題に焦点をあてる。
論文 参考訳(メタデータ) (2023-12-12T13:51:25Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Meta-tuning Loss Functions and Data Augmentation for Few-shot Object
Detection [7.262048441360132]
少ないショットのオブジェクト検出は、少数ショットの学習とオブジェクト検出という領域において、新たなトピックである。
本稿では,数発検出を促進できる帰納的バイアスの学習を可能にする訓練手法を提案する。
提案手法は,高パラメトリックかつ複雑な数ショットメタモデルとは対照的に,解釈可能な損失関数を生成する。
論文 参考訳(メタデータ) (2023-04-24T15:14:16Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。