論文の概要: A Selective Learning Method for Temporal Graph Continual Learning
- arxiv url: http://arxiv.org/abs/2503.01580v1
- Date: Mon, 03 Mar 2025 14:22:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:55.654407
- Title: A Selective Learning Method for Temporal Graph Continual Learning
- Title(参考訳): 時間グラフ連続学習のための選択学習法
- Authors: Hanmo Liu, Shimin Di, Haoyang Li, Xun Jian, Yue Wang, Lei Chen,
- Abstract要約: リアルタイムの時間グラフはしばしば時間とともに新しいノードクラスを導入しますが、既存のTGLメソッドは固定されたクラスのセットを前提としています。
本稿では,新しい問題を時間グラフ連続学習(TGCL)として定義する。
このような置換によって生じる誤差の上限を導出し、古いクラスデータの分布を保ちながら、分類誤差を最小限に抑えるサブセットの選択と学習の目的に変換する。
- 参考スコア(独自算出の注目度): 18.793135016181804
- License:
- Abstract: Node classification is a key task in temporal graph learning (TGL). Real-life temporal graphs often introduce new node classes over time, but existing TGL methods assume a fixed set of classes. This assumption brings limitations, as updating models with full data is costly, while focusing only on new classes results in forgetting old ones. Graph continual learning (GCL) methods mitigate forgetting using old-class subsets but fail to account for their evolution. We define this novel problem as temporal graph continual learning (TGCL), which focuses on efficiently maintaining up-to-date knowledge of old classes. To tackle TGCL, we propose a selective learning framework that substitutes the old-class data with its subsets, Learning Towards the Future (LTF). We derive an upper bound on the error caused by such replacement and transform it into objectives for selecting and learning subsets that minimize classification error while preserving the distribution of the full old-class data. Experiments on three real-world datasets validate the effectiveness of LTF on TGCL.
- Abstract(参考訳): ノード分類は時間グラフ学習(TGL)における重要なタスクである。
リアルタイムの時間グラフはしばしば時間とともに新しいノードクラスを導入しますが、既存のTGLメソッドは固定されたクラスのセットを前提としています。
この仮定は、完全なデータでモデルを更新するのにコストがかかるのに対して、新しいクラスのみに焦点を当てると古いクラスを忘れてしまうという制限をもたらす。
グラフ連続学習(GCL)メソッドは、古いクラスのサブセットを使った忘れを緩和するが、その進化を説明できない。
本稿では,新しい問題を時間グラフ連続学習(TGCL)として定義する。
TGCLに取り組むために,従来のデータに代替する選択学習フレームワーク,Learning Towards the Future (LTF)を提案する。
このような置換によって生じる誤差の上限を導出し、古いクラスデータの分布を保ちながら、分類誤差を最小限に抑えるサブセットの選択と学習の目的に変換する。
3つの実世界のデータセットの実験は、TLFがTGCLに与える影響を検証する。
関連論文リスト
- Inductive Graph Few-shot Class Incremental Learning [34.19083477893245]
本稿では,新しいノードを持つ新しいクラスを継続的に学習するインダクティブGFSCILを提案する。
トランスダクティブGFSCILと比較して、インダクティブ設定は、アクセス不能な先行データにより破滅的忘れを悪化させる。
そこで我々はTopology-based class Augmentation and Prototype calibrationと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T00:06:20Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) は、部分的にラベル付けされたデータを自動でクラスタリングすることを目的としている。
ラベル付きデータには、ラベル付きデータの既知のカテゴリだけでなく、新しいカテゴリのインスタンスも含まれている。
GCDの効果的な方法の1つは、ラベルなしデータの識別表現を学習するために自己教師付き学習を適用することである。
本稿では,クラスタリングの精度を効果的に向上する動的概念コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-30T14:04:39Z) - Bypassing Logits Bias in Online Class-Incremental Learning with a
Generative Framework [15.345043222622158]
我々は、時間とともに新しいクラスが出現するオンラインのクラス増分学習環境に焦点を当てる。
既存のほとんどのメソッドは、ソフトマックス分類器を使ったリプレイベースである。
特徴空間に基づく新しい生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-19T06:54:20Z) - Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks [59.12108527904171]
モデルは新しいクラスを認識し、古いクラスに対する差別性を維持すべきである。
古いクラスを忘れずに新しいクラスを認識するタスクは、FSCIL ( few-shot class-incremental Learning) と呼ばれる。
我々は,LearnIng Multi-phase Incremental Tasks (LIMIT) によるメタラーニングに基づくFSCILの新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2022-03-31T13:46:41Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot Class-Incremental Learning(FSCIL)は、いくつかのデータポイントから新しい概念を継続的に学習できる機械学習アルゴリズムの設計を目指している。
難点は、新しいクラスからの限られたデータが、重大な過度な問題を引き起こすだけでなく、破滅的な忘れの問題も悪化させることにある。
我々は,適応のための分類器間のコンテキスト情報を伝達するグラフモデルを用いた連続進化型cif(cec)を提案する。
論文 参考訳(メタデータ) (2021-04-07T10:54:51Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
このようなシナリオにおけるキャリブレーションとパフォーマンスを改善する2つの方法を提案します。
異なるサンプルによるデータセットバイアスに対して,シフトバッチ正規化を提案する。
提案手法は,複数の長尾認識ベンチマークデータセットに新しいレコードをセットする。
論文 参考訳(メタデータ) (2021-04-01T13:55:21Z) - Class-incremental Learning with Rectified Feature-Graph Preservation [24.098892115785066]
本論文の中心的なテーマは,逐次的な段階を経る新しいクラスを学習することである。
旧知識保存のための重み付きユークリッド正規化を提案する。
新しいクラスを効果的に学習するために、クラス分離を増やすためにバイナリクロスエントロピーでどのように機能するかを示す。
論文 参考訳(メタデータ) (2020-12-15T07:26:04Z) - Learning Adaptive Embedding Considering Incremental Class [55.21855842960139]
CIL(Class-Incremental Learning)は,未知のクラスを逐次生成するストリーミングデータを用いて,信頼性の高いモデルをトレーニングすることを目的としている。
従来のクローズドセット学習とは異なり、CILには2つの大きな課題がある。
新たなクラスが検出された後、以前のデータ全体を使用して再トレーニングすることなく、モデルを更新する必要がある。
論文 参考訳(メタデータ) (2020-08-31T04:11:24Z) - Self-Supervised Learning Aided Class-Incremental Lifelong Learning [17.151579393716958]
クラスインクリメンタルラーニング(Class-IL)における破滅的忘れの問題について検討する。
クラスILの訓練手順では、モデルが次のタスクについて知識を持っていないため、これまで学習してきたタスクに必要な特徴のみを抽出し、その情報は共同分類に不十分である。
本稿では,ラベルを必要とせずに効果的な表現を提供する自己教師型学習と,この問題を回避するためのクラスILを組み合わせることを提案する。
論文 参考訳(メタデータ) (2020-06-10T15:15:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。