論文の概要: An Efficient Approach to Detecting Lung Nodules Using Swin Transformer
- arxiv url: http://arxiv.org/abs/2503.01592v1
- Date: Mon, 03 Mar 2025 14:30:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:26:03.673214
- Title: An Efficient Approach to Detecting Lung Nodules Using Swin Transformer
- Title(参考訳): Swin Transformer を用いた肺結節の検出
- Authors: Saeed Shakuri, Alireza Rezvanian,
- Abstract要約: 肺癌はがんによる死亡率が最も高く、早期診断は生存率を高める可能性がある。
様々な肺検出モデルが存在するが、その多くが効率性に欠ける。
より効率的な2次元CTスライス手法を提案する。
- 参考スコア(独自算出の注目度): 0.18416014644193066
- License:
- Abstract: Lung cancer has the highest rate of cancer-caused deaths, and early-stage diagnosis could increase the survival rate. Lung nodules are common indicators of lung cancer, making their detection crucial. Various lung nodule detection models exist, but many lack efficiency. Hence, we propose a more efficient approach by leveraging 2D CT slices, reducing computational load and complexity in training and inference. We employ the tiny version of Swin Transformer to benefit from Vision Transformers (ViT) while maintaining low computational cost. A Feature Pyramid Network is added to enhance detection, particularly for small nodules. Additionally, Transfer Learning is used to accelerate training. Our experimental results show that the proposed model outperforms state-of-the-art methods, achieving higher mAP and mAR for small nodules by 1.3% and 1.6%, respectively. Overall, our model achieves the highest mAP of 94.7% and mAR of 94.9%.
- Abstract(参考訳): 肺癌はがんによる死亡率が最も高く、早期診断は生存率を高める可能性がある。
肺結節は肺がんの一般的な指標であり、その検出が重要である。
様々な肺結節検出モデルが存在するが、その多くが効率性に欠ける。
そこで本研究では,2次元CTスライスを利用して,学習と推論における計算負荷と複雑性を低減し,より効率的な手法を提案する。
我々は、低計算コストを維持しながらビジョントランスフォーマー(ViT)の恩恵を受けるために、小さなバージョンのSwin Transformerを使用します。
検出を強化するために、特に小さな結節に対して、Feature Pyramid Networkが加えられている。
さらに、トランスファーラーニングはトレーニングの加速に使用される。
実験の結果,提案手法は,小節に対するmAPおよびmARをそれぞれ1.3%,1.6%向上させることができた。
総じて、このモデルが最も高いmAPは94.7%、mARは94.9%である。
関連論文リスト
- Advanced Lung Nodule Segmentation and Classification for Early Detection of Lung Cancer using SAM and Transfer Learning [0.0]
本研究は,Segment Anything Model(SAM)と転写学習技術を組み合わせた肺結節セグメンテーションの革新的アプローチを提案する。
提案手法はバウンディングボックスプロンプトとビジョントランスフォーマーモデルを利用してセグメンテーション性能を向上し,高精度なDice similarity Coefficient (DSC) とIntersection over Union (IoU) のメトリクスを実現する。
以上の結果から,CT検査から肺結節を正確に抽出するモデルの有効性が示唆され,早期発見の進展と肺癌診断における患者のケア結果の改善が示唆された。
論文 参考訳(メタデータ) (2024-12-31T18:21:57Z) - Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
肺がんはがんの診断の主要な原因の1つであり、世界中でがん関連死亡の原因となっている。
肺結節の分節は、悪性病変と良性病変の区別において、医師を支援する上で重要な役割を担っている。
本稿では,CT画像における肺結節のセグメンテーションモデルを導入し,セグメンテーションと分類プロセスを統合する深層学習フレームワークを活用する。
論文 参考訳(メタデータ) (2024-10-26T11:58:12Z) - MSDet: Receptive Field Enhanced Multiscale Detection for Tiny Pulmonary Nodule [15.790010627377262]
肺結節は肺癌の早期診断における重要な指標である。
従来のCT画像撮影法は、煩雑な処置、低検出率、ローカライゼーション精度の低下に悩まされていた。
肺小結節検出のためのマルチスケールアテンションおよび受容野ネットワークであるMSDetを提案する。
論文 参考訳(メタデータ) (2024-09-21T06:08:23Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
本研究では, 高精度ながん検出を実現するための新しいテキスト誘導学習法を提案する。
本手法は,大規模プレトレーニングVLMによる臨床知識の活用により,一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2024-05-23T07:03:38Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Less Could Be Better: Parameter-efficient Fine-tuning Advances Medical
Vision Foundation Models [71.18275399694689]
医療視基盤モデルにおけるPEFTの有効性はまだ不明である。
NIH ChestX-ray14のラベル付きデータを用いたAUROCスコアの80.6%など,さまざまなデータ効率の学習タスクに対して,新たな最先端技術を構築した。
本研究は, PEFTを用いた医用画像の伝達学習において, コミュニティの注目を集めることが期待できる。
論文 参考訳(メタデータ) (2024-01-22T18:59:07Z) - A Data Augmentation Method and the Embedding Mechanism for Detection and
Classification of Pulmonary Nodules on Small Samples [10.006124666261229]
新しいデータ拡張方法と埋め込み機構の2つの戦略が導入された。
肺結節検出のための拡張手法を用いた3DVNETモデルの結果,提案手法がGAN(Generative Adversarial Network)の枠組みに基づく手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-03-02T13:58:45Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
肺癌早期検診では胸部X線像の肺結節検出が一般的である。
ディープラーニングに基づくコンピュータ支援診断(CAD)システムは、CXRの結節スクリーニングのために放射線科医をサポートすることができる。
このようなデータセットの可用性を損なうため,データ拡張のために肺結節合成法を提案する。
論文 参考訳(メタデータ) (2022-07-19T16:38:48Z) - Efficient Lung Cancer Image Classification and Segmentation Algorithm
Based on Improved Swin Transformer [0.0]
トランスモデルは、自然言語処理(NLP)の成功の後、コンピュータビジョン(CV)の分野に適用された。
本稿では,効率的なトランスを用いたセグメンテーション手法を創造的に提案し,医用画像解析に応用する。
本アルゴリズムは,肺癌データを解析して肺がん分類と分節化のタスクを完了し,医療スタッフに効率的な技術支援を提供することを目的とする。
論文 参考訳(メタデータ) (2022-07-04T15:50:06Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
胸部X線撮影は、COVID-19の代替スクリーニング方法です。
コンピュータ支援診断(CAD)は低コストで高速で実現可能であることが証明されている。
この課題に対処するために,インプリント重みという低ショット学習手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T19:01:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。