Evaluating Stenosis Detection with Grounding DINO, YOLO, and DINO-DETR
- URL: http://arxiv.org/abs/2503.01601v1
- Date: Mon, 03 Mar 2025 14:38:54 GMT
- Title: Evaluating Stenosis Detection with Grounding DINO, YOLO, and DINO-DETR
- Authors: Muhammad Musab Ansari,
- Abstract summary: This study evaluates the performance of state-of-the-art object detection models on the ARCADE dataset.<n>The models are assessed using COCO evaluation metrics, including Intersection over Union (IoU), Average Precision (AP), and Average Recall (AR)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting stenosis in coronary angiography is vital for diagnosing and managing cardiovascular diseases. This study evaluates the performance of state-of-the-art object detection models on the ARCADE dataset using the MMDetection framework. The models are assessed using COCO evaluation metrics, including Intersection over Union (IoU), Average Precision (AP), and Average Recall (AR). Results indicate variations in detection accuracy across different models, attributed to differences in algorithmic design, transformer-based vs. convolutional architectures. Additionally, several challenges were encountered during implementation, such as compatibility issues between PyTorch, CUDA, and MMDetection, as well as dataset inconsistencies in ARCADE. The findings provide insights into model selection for stenosis detection and highlight areas for further improvement in deep learning-based coronary artery disease diagnosis.
Related papers
- Gradient Attention Map Based Verification of Deep Convolutional Neural Networks with Application to X-ray Image Datasets [1.0208529247755187]
We propose a comprehensive verification framework that evaluates model suitability through multiple complementary strategies.
First, we introduce a Gradient Attention Map (GAM)-based approach that analyzes attention patterns using Grad-CAM.
Second, we extend verification to early convolutional feature maps, capturing structural mis-alignments missed by attention alone.
Third, we incorporate an additional garbage class into the classification model to explicitly reject out-of-distribution inputs.
arXiv Detail & Related papers (2025-04-29T23:41:37Z) - Enhancing Reconstruction-Based Out-of-Distribution Detection in Brain MRI with Model and Metric Ensembles [2.6123133623254193]
Out-of-distribution (OOD) detection is crucial for safely deploying automated medical image analysis systems.<n>We investigated the effectiveness of a reconstruction-based autoencoder for unsupervised detection of synthetic artifacts in brain MRI.
arXiv Detail & Related papers (2024-12-23T13:58:52Z) - Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
variations in CT scanner models and acquisition protocols introduce significant variability in the extracted radiomic features.<n> LTDiff++ is a multiscale latent diffusion model designed to enhance feature extraction in medical imaging.
arXiv Detail & Related papers (2024-10-05T02:13:57Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) aims to identify any anomaly as an outlier from a healthy training distribution.<n>generative models are used to learn the reconstruction of healthy brain anatomy for a given input image.<n>We propose conditioning the denoising process of diffusion models with additional information derived from a latent representation of the input image.
arXiv Detail & Related papers (2023-12-07T11:03:42Z) - Diagnosing Human-object Interaction Detectors [42.283857276076596]
We introduce a diagnosis toolbox to provide detailed quantitative break-down analysis of HOI detection models.
We analyze eight state-of-the-art HOI detection models and provide valuable diagnosis insights to foster future research.
arXiv Detail & Related papers (2023-08-16T17:39:15Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Hierarchical Analysis of Visual COVID-19 Features from Chest Radiographs [5.832030105874915]
We model radiological features with a human-interpretable class hierarchy that aligns with the radiological decision process.
Experiments show that model failures highly correlate with ICU imaging conditions and with the inherent difficulty in distinguishing certain types of radiological features.
arXiv Detail & Related papers (2021-07-14T11:37:28Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.