A General Purpose Spectral Foundational Model for Both Proximal and Remote Sensing Spectral Imaging
- URL: http://arxiv.org/abs/2503.01628v1
- Date: Mon, 03 Mar 2025 15:04:00 GMT
- Title: A General Purpose Spectral Foundational Model for Both Proximal and Remote Sensing Spectral Imaging
- Authors: William Michael Laprade, Jesper Cairo Westergaard, Svend Christensen, Mads Nielsen, Anders Bjorholm Dahl,
- Abstract summary: Time and resource constraints limit our ability to collect large spectral datasets.<n>We propose a large-scale foundational model and dataset built upon the masked autoencoder architecture.
- Score: 2.4832894642382195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spectral imaging data acquired via multispectral and hyperspectral cameras can have hundreds of channels, where each channel records the reflectance at a specific wavelength and bandwidth. Time and resource constraints limit our ability to collect large spectral datasets, making it difficult to build and train predictive models from scratch. In the RGB domain, we can often alleviate some of the limitations of smaller datasets by using pretrained foundational models as a starting point. However, most existing foundation models are pretrained on large datasets of 3-channel RGB images, severely limiting their effectiveness when used with spectral imaging data. The few spectral foundation models that do exist usually have one of two limitations: (1) they are built and trained only on remote sensing data limiting their application in proximal spectral imaging, (2) they utilize the more widely available multispectral imaging datasets with less than 15 channels restricting their use with hundred-channel hyperspectral images. To alleviate these issues, we propose a large-scale foundational model and dataset built upon the masked autoencoder architecture that takes advantage of spectral channel encoding, spatial-spectral masking and ImageNet pretraining for an adaptable and robust model for downstream spectral imaging tasks.
Related papers
- CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.
variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.
We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - BihoT: A Large-Scale Dataset and Benchmark for Hyperspectral Camouflaged Object Tracking [22.533682363532403]
We provide a new task called hyperspectral camouflaged object tracking (HCOT)
We meticulously construct a large-scale HCOT dataset, termed BihoT, which consists of 41,912 hyperspectral images covering 49 video sequences.
A simple but effective baseline model, named spectral prompt-based distractor-aware network (SPDAN), is proposed.
arXiv Detail & Related papers (2024-08-22T09:07:51Z) - SpectralEarth: Training Hyperspectral Foundation Models at Scale [47.93167977587301]
We introduce SpectralEarth, a large-scale multi-temporal dataset designed to pretrain hyperspectral foundation models.
We pretrain a series of foundation models on SpectralEarth using state-of-the-art self-supervised learning (SSL) algorithms.
We construct four downstream datasets for land-cover and crop-type mapping, providing benchmarks for model evaluation.
arXiv Detail & Related papers (2024-08-15T22:55:59Z) - Spectral Image Data Fusion for Multisource Data Augmentation [44.99833362998488]
Multispectral and hyperspectral images are increasingly popular in different research fields, such as remote sensing, astronomical imaging, or precision agriculture.
The amount of free data available to perform machine learning tasks is relatively small.
Artificial intelligence models developed in the area of spectral imaging require input images with a fixed spectral signature.
arXiv Detail & Related papers (2024-04-05T13:40:18Z) - SpectralNeRF: Physically Based Spectral Rendering with Neural Radiance
Field [70.15900280156262]
We propose an end-to-end Neural Radiance Field (NeRF)-based architecture for high-quality physically based rendering from a novel spectral perspective.
SpectralNeRF is superior to recent NeRF-based methods when synthesizing new views on synthetic and real datasets.
arXiv Detail & Related papers (2023-12-14T07:19:31Z) - DiffusionSat: A Generative Foundation Model for Satellite Imagery [63.2807119794691]
We present DiffusionSat, to date the largest generative foundation model trained on a collection of publicly available large, high-resolution remote sensing datasets.
Our method produces realistic samples and can be used to solve multiple generative tasks including temporal generation, superresolution given multi-spectral inputs and in-painting.
arXiv Detail & Related papers (2023-12-06T16:53:17Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - spectrai: A deep learning framework for spectral data [0.0]
We present spectrai, an open-source framework designed to facilitate the training of neural networks on spectral data.
Specti provides numerous built-in spectral data pre-processing and augmentation methods, neural networks for spectral data including spectral (image) denoising, spectral (image) classification, spectral image segmentation, and spectral image super-resolution.
arXiv Detail & Related papers (2021-08-17T12:54:34Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.