論文の概要: The Emergence of Grammar through Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2503.01635v1
- Date: Mon, 03 Mar 2025 15:10:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:15:43.430692
- Title: The Emergence of Grammar through Reinforcement Learning
- Title(参考訳): 強化学習による文法の創発
- Authors: Stephen Wechsler, James W. Shearer, Katrin Erk,
- Abstract要約: 構文的・意味的構成の文法体系の進化は、強化学習理論の新たな応用によってモデル化される。
私たちは、与えられたコンテキストで表現できる異なるメッセージに対する確率分布をモデル内に含んでいます。
提案された学習と生産のアルゴリズムは、言語学習を、メッセージの確率から得られる各ステップの利点など、一連の単純なステップに分解する。
- 参考スコア(独自算出の注目度): 5.599852485003601
- License:
- Abstract: The evolution of grammatical systems of syntactic and semantic composition is modeled here with a novel application of reinforcement learning theory. To test the functionalist thesis that speakers' expressive purposes shape their language, we include within the model a probability distribution over different messages that could be expressed in a given context. The proposed learning and production algorithm then breaks down language learning into a sequence of simple steps, such that each step benefits from the message probabilities. The results are presented in the form of numerical simulations of language histories and analytic proofs. The potential for applying these mathematical models to the study of natural language is illustrated with two case studies from the history of English.
- Abstract(参考訳): 構文的・意味的構成の文法体系の進化は、強化学習理論の新たな応用によってモデル化される。
話者の表現目的が言語を形作るという機能主義的理論をテストするために、与えられた文脈で表現できる異なるメッセージにまたがる確率分布をモデル内に含めます。
提案した学習と生産のアルゴリズムは、各ステップがメッセージの確率から恩恵を受けるように、言語学習を一連の単純なステップに分解する。
結果は,言語史と解析的証明の数値シミュレーションの形で提示される。
これらの数学的モデルを自然言語研究に適用する可能性は、英語の歴史から2つのケーススタディで示される。
関連論文リスト
- Finding Structure in Language Models [3.882018118763685]
この論文は、言語モデルが人間のものと似た文法構造を深く理解しているかどうかに関するものである。
我々は,大規模言語モデルの複雑な性質の理解を深める新しい解釈可能性技術を開発する。
論文 参考訳(メタデータ) (2024-11-25T14:37:24Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - Feature Interactions Reveal Linguistic Structure in Language Models [2.0178765779788495]
本研究では,ポストホック解釈における特徴帰属手法の文脈における特徴的相互作用について検討した。
私たちは、正規言語分類タスクで完璧にモデルをトレーニングする灰色のボックスの方法論を開発します。
特定の構成下では、いくつかの手法が実際にモデルが獲得した文法規則を明らかにすることができることを示す。
論文 参考訳(メタデータ) (2023-06-21T11:24:41Z) - Probing via Prompting [71.7904179689271]
本稿では,探索をプロンプトタスクとして定式化することで,新しいモデルフリーな探索手法を提案する。
我々は5つの探索課題について実験を行い、我々のアプローチが診断プローブよりも情報抽出に優れていることを示す。
次に,その特性に不可欠な頭部を除去し,言語モデリングにおけるモデルの性能を評価することにより,事前学習のための特定の言語特性の有用性を検討する。
論文 参考訳(メタデータ) (2022-07-04T22:14:40Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - The Grammar-Learning Trajectories of Neural Language Models [42.32479280480742]
ニューラルネットワークモデルは,データ上での終末性能が異なるにもかかわらず,同じ順序で言語現象を取得することを示す。
以上の結果から,NLMは一貫した発達段階を示すことが示唆された。
論文 参考訳(メタデータ) (2021-09-13T16:17:23Z) - The Rediscovery Hypothesis: Language Models Need to Meet Linguistics [8.293055016429863]
現代言語モデルの性能向上に言語知識が必須条件であるかどうかを検討する。
その結果, 言語構造を探索した場合, かなり圧縮されるが, 事前学習目的によく適合する言語モデルは, 良好なスコアを保っていることがわかった。
この結果は再発見仮説を支持し,本論文の第2の貢献である言語モデル目標と言語情報との関連性に関する情報論的枠組みを導出する。
論文 参考訳(メタデータ) (2021-03-02T15:57:39Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
談話言語表現を学習するための新しい事前学習目的である文レベル言語モデリングを導入する。
本モデルでは,この特徴により,従来のBERTの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-10-30T13:33:41Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z) - Overestimation of Syntactic Representationin Neural Language Models [16.765097098482286]
構文構造を誘導するモデルの能力を決定する一般的な方法の1つは、テンプレートに従って生成された文字列上でモデルを訓練し、それらの文字列と表面的に類似した文字列を異なる構文で区別するモデルの能力をテストすることである。
本稿では,2つの非シンタクティックなベースライン言語モデルを用いた最近の論文の肯定的な結果を再現することで,このアプローチの根本的な問題を説明する。
論文 参考訳(メタデータ) (2020-04-10T15:13:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。