論文の概要: Can Optical Denoising Clean Sonar Images? A Benchmark and Fusion Approach
- arxiv url: http://arxiv.org/abs/2503.01655v2
- Date: Sun, 20 Jul 2025 12:00:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 14:33:31.945673
- Title: Can Optical Denoising Clean Sonar Images? A Benchmark and Fusion Approach
- Title(参考訳): クリーンソナー画像の光学的評価は可能か? : ベンチマークと融合のアプローチ
- Authors: Ziyu Wang, Tao Xue, Jingyuan Li, Haibin Zhang, Zhiqiang Xu, Gaofei Xu, Zhen Wang, Yanbin Wang, Zhiquan Liu,
- Abstract要約: ソナー画像における物体検出は水中ロボット工学の応用に不可欠である。
復調技術は光学画像において顕著な成功を収めてきたが、ソナーデータの適用性は未解明のままである。
本研究では、異なるアーキテクチャを持つ9つの最先端のディープ・デノゲーション・モデルについて、初めて体系的評価を行った。
- 参考スコア(独自算出の注目度): 24.02055678758872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection in sonar images is crucial for underwater robotics applications including autonomous navigation and resource exploration. However, complex noise patterns inherent in sonar imagery, particularly speckle, reverberation, and non-Gaussian noise, significantly degrade detection accuracy. While denoising techniques have achieved remarkable success in optical imaging, their applicability to sonar data remains underexplored. This study presents the first systematic evaluation of nine state-of-the-art deep denoising models with distinct architectures, including Neighbor2Neighbor with varying noise parameters, Blind2Unblind with different noise configurations, and DSPNet, for sonar image preprocessing. We establish a rigorous benchmark using five publicly available sonar datasets and assess their impact on four representative detection algorithms: YOLOX, Faster R-CNN, SSD300, and SSDMobileNetV2. Our evaluation addresses three unresolved questions: first, how effectively optical denoising architectures transfer to sonar data; second, which model families perform best against sonar noise; and third, whether denoising truly improves detection accuracy in practical pipelines. Extensive experiments demonstrate that while denoising generally improves detection performance, effectiveness varies across methods due to their inherent biases toward specific noise types. To leverage complementary denoising effects, we propose a mutually-supervised multi-source denoising fusion framework where outputs from different denoisers mutually supervise each other at the pixel level, creating a synergistic framework that produces cleaner images.
- Abstract(参考訳): ソナー画像における物体検出は、自律航法や資源探査を含む水中ロボット工学の応用にとって不可欠である。
しかし, ソナー画像, 特にスペックル, 残響, 非ガウス雑音の複雑なノイズパターンは, 検出精度を著しく低下させた。
復調技術は光学画像において顕著な成功を収めてきたが、ソナーデータの適用性は未解明のままである。
本研究では, 異なる雑音パラメータを持つNeighbor2Neighbor, 異なる雑音構成を持つBlind2Unblind, ソナー画像前処理のためのDSPNetを含む, 異なるアーキテクチャを持つ9つの最先端ディープデノイングモデルについて, 初めて体系的評価を行った。
5つの公開ソナーデータセットを用いて厳密なベンチマークを確立し、YOLOX、Faster R-CNN、SSD300、SSDMobileNetV2の4つの代表的な検出アルゴリズムへの影響を評価する。
評価では,3つの未解決問題に対処する。第1に,光デノイングアーキテクチャがソナーデータにいかに効果的に移行するか,第2に,モデルファミリーがソナーノイズに対して最高の性能を発揮するか,第3に,デノイングが実用的なパイプラインにおける検出精度を真に向上するか否か,である。
広汎な実験により、デノナイジングは一般的に検出性能を改善するが、特定のノイズタイプに対して固有のバイアスがあるため、有効性はメソッドによって異なることが示されている。
相補的復調効果を活用するために,異なる復調器からの出力を画素レベルで相互に監督し,よりクリーンな画像を生成する相乗的フレームワークを作成する,相互監督型マルチソース復調融合フレームワークを提案する。
関連論文リスト
- A Self-Supervised Denoising Strategy for Underwater Acoustic Camera Imageries [3.0918473503782042]
本稿では,深層学習技術を用いた音響カメラ画像の復調手法を提案する。
微細な特徴を保存しながらノイズを除去し、局所的な特徴マッチングの性能を向上させる。
論文 参考訳(メタデータ) (2024-06-05T04:07:37Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
本稿では,デノナイジングネットワークの一般化性能を高めるための新しい手法を提案する。
提案手法では,入力画像のランダムなピクセルをマスキングし,学習中に欠落した情報を再構成する。
提案手法は,他のディープラーニングモデルよりも優れた一般化能力を示し,実世界のシナリオに直接適用可能である。
論文 参考訳(メタデータ) (2023-03-23T09:33:44Z) - Deep Variation Prior: Joint Image Denoising and Noise Variance
Estimation without Clean Data [2.3061446605472558]
本稿では,1つの共同学習フレームワークにおける画像復調と雑音分散推定の課題について検討する。
我々は、教師なしのディープラーニングフレームワークであるDVPを構築し、デノイザを同時に学習し、ノイズ分散を推定する。
提案手法では, クリーンなトレーニング画像やノイズ推定の外部ステップは必要とせず, ノイズ画像のみを用いて最小2乗誤差を近似する。
論文 参考訳(メタデータ) (2022-09-19T17:29:32Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
そこで本研究では,実世界の画像認識のための単純なベイズディープアンサンブル(BDE)手法を提案する。
我々のBDEは、最先端の復調法よりも+0.28dBPSNRのゲインを達成している。
我々のBDEは他の画像復元タスクにも拡張でき、ベンチマークデータセット上で+0.30dB、+0.18dB、+0.12dB PSNRゲインを達成することができる。
論文 参考訳(メタデータ) (2022-06-08T06:19:30Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
本稿では,最先端のデノナイジング性能を実現するために,教師なしの実用的なデノナイジング手法を提案する。
本手法では, 1つのノイズ画像と1つのノイズモデルしか必要とせず, 実際の生画像に容易にアクセス可能である。
実世界のアプリケーションにおける生画像復調性能を評価するため,500シーンのシーンを含む高品質な生画像データセットSenseNoise-500を構築した。
論文 参考訳(メタデータ) (2021-11-29T07:22:53Z) - Influence of image noise on crack detection performance of deep
convolutional neural networks [0.0]
深層畳み込みニューラルネットワークを用いた画像データからのひび割れの分類について多くの研究がなされている。
本稿では,画像ノイズがネットワークの精度に与える影響について検討する。
AlexNetは提案したインデックスに基づいて最も効率的なモデルに選ばれた。
論文 参考訳(メタデータ) (2021-11-03T09:08:54Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
センサの実際の雑音を直接サンプリングすることで、ノイズを合成する新しい視点を導入する。
それは本質的に、異なるカメラセンサーに対して正確な生画像ノイズを発生させる。
論文 参考訳(メタデータ) (2021-10-10T10:45:24Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
CMOS光センサの撮像パイプラインにおけるノイズ統計について検討する。
実雑音構造を正確に特徴付けることのできる包括的ノイズモデルを定式化する。
我々のノイズモデルは、学習に基づく低照度復調アルゴリズムのためのリアルなトレーニングデータを合成するのに利用できる。
論文 参考訳(メタデータ) (2021-08-04T16:36:29Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
本稿では,学習に基づく新たな非盲検手法であるAttention Residual Convolutional Neural Network (ARCNN)を提案し,その拡張としてFlexible Attention Residual Convolutional Neural Network (FARCNN)を提案する。
ARCNNはガウス語とポアソン語で約0.44dBと0.96dBの平均PSNR結果を達成し、FARCNNはARCNNに比べて若干パフォーマンスが悪くても非常に一貫した結果を示した。
論文 参考訳(メタデータ) (2021-01-19T16:37:57Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
Neighbor2Neighborを提示し、ノイズの多い画像のみで効果的な画像消音モデルをトレーニングします。
ネットワークのトレーニングに使用される入力とターゲットは、同じノイズ画像からサブサンプリングされた画像である。
デノイジングネットワークは、第1段階で生成されたサブサンプルトレーニングペアで訓練され、提案された正規化器は、より良いパフォーマンスのための追加の損失として訓練される。
論文 参考訳(メタデータ) (2021-01-08T02:03:25Z) - Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising [54.730707387866076]
本稿では,新しい自己教師型デノベーションフレームワークであるNoss2Sameを紹介する。
特にノイズ2Sameは、ノイズモデルに関するJ-不変性や余分な情報を必要としない。
以上の結果から,ノイズ2Sameは従来の自己監督型遮音法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2020-10-22T18:12:26Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
合成データで訓練されたデノイザーは、未知のノイズの多様性に対処できないことが多い。
従来の画像ベース手法は、ビデオデノイザに直接適用した場合、ノイズが過度に収まる。
本稿では,これらの課題に対処する上で有効な,ビデオ・デノベーション・ネットワークの汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-07T07:19:48Z) - Deep Learning on Image Denoising: An overview [92.07378559622889]
画像認知におけるディープテクニックの比較研究を行っている。
まず、付加的な白色雑音画像に対して、深部畳み込みニューラルネットワーク(CNN)を分類する。
次に、定量的および定性的な分析の観点から、パブリック・デノゲーション・データセットの最先端の手法を比較した。
論文 参考訳(メタデータ) (2019-12-31T05:03:57Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。